scholarly journals Study of Inertia and Damping Characteristics of Doubly Fed Induction Generators and Improved Additional Frequency Control Strategy

Energies ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 38 ◽  
Author(s):  
Xiangwu Yan ◽  
Zijun Song ◽  
Yun Xu ◽  
Ying Sun ◽  
Ziheng Wang ◽  
...  

Large-scale wind farms connect to the grid and deliver electrical energy to the load center. When a short-circuit fault occurs on the transmission line, there will be an excess of electric power, but the power demand will increase instantaneously once the fault is removed. The conventional additional frequency control strategies of wind farms can effectively reduce the frequency fluctuation caused by load mutation, but still there are some limitations for the frequency fluctuation caused by the whole process of occurrence, development and removal of a short-circuit fault on the transmission line. Therefore, this paper presents an improved additional frequency control strategy for wind farms. According to the variation law of system frequency during the whole process of a short-circuit fault, the proposed strategy revises the parameters in conventional additional frequency control of the doubly-fed induction generator (DFIG) to have effective damping characteristics throughout the entire process from failure to removal, thereby the output power of DFIGs could respond to frequency fluctuation rapidly. MATLAB/ Simulink is used to build a four-machine two-area model for simulation analysis. The results show that the control strategy can effectively reduce the frequency fluctuation of DFIGs, and enhance the stability of the system.

2014 ◽  
Vol 1070-1072 ◽  
pp. 228-232
Author(s):  
Xiao Ying Zhang ◽  
Si Wen Li

With many grid-connected wind farms of Doubly-fed Induction Generator (DFIG) type taking the palce of conventional synchronous generators, the frequency control ability of the system will decrease. But the existing control strategy based on maximum wind power tracking of DFIG can not response to the deviation of the system frequency. This paper proposes a new hybrid frequency control strategy based on the research of the frequency response to the doubly fed induction wind turbine curves switching inertia control loop and the ability for the pitch angle control participating in the system primary frequency modulation. The strategy reduces the initial rate of change and the steady state error of system frequency with the combined action of the curves switching inertial control and pitch frequency control. Finally, the simulation results of the two areas with four generators validate the effectiveness of the strategy.


2012 ◽  
Vol 512-515 ◽  
pp. 788-793
Author(s):  
Xiao Hua Zhou ◽  
Ming Qiang Wang ◽  
Wei Wei Zou

Traditional decoupling control strategy of doubly-fed induction generator (DFIG) wind turbine makes little contribution to system inertia and do not participate in the system frequency control, the synchronization of large-scale wind power requires wind turbine have the ability to participate in the regulation of power system frequency. This paper adds a frequency control segment to traditional DFIG wind turbine and considers the doubly-fed wind turbine operating on the state of the super-synchronous speed, by analysis the effect of inertia and proportional control strategies, a fuzzy control strategy which combines the advantages of the former two control strategies is proposed, simulation results show that this control strategy can more effectively improve the system frequency response.


2021 ◽  
Vol 15 (1) ◽  
pp. 37-44
Author(s):  
Thai Hiep Le ◽  
◽  
Duong Hoang Phuc Tran

In this paper, the operating mode of a doubly fed induction generator (DFIG) wind turbine is studied in order to evaluate its fault ride-through and transient stability with a grid’s short circuit fault at near the wind power plant. Based on the structure of DFIG, external resistors are directly connected to rotor windings, then the generator operates as a wound rotor induction generator (WRIG) when there is a short circuit fault on the grid. According to the simulation results in Matlab, the active power is consumed on the crowbar resistor, causing the active power characteristic of generator is changed from high to low. As a result, the amount of excess mechanical energy is not much, so the generator be not accelerated significantly. These simulation results show that it is appropriate to use the crowbar resistor to change the power characteristic of the DFIG. Thanks to this change, the generator is still connected to the grid, stable operation both during and after a short circuit.


2012 ◽  
Vol 512-515 ◽  
pp. 758-762
Author(s):  
Guo Qing Li ◽  
Li Meng Wang

The fast development of wind power generation brings new requirements for wind turbine integration to grid. In order to improve the lower voltage ride through(LVRT) capability of fixed speed induction generator(FSIG) in wind power generating systems, the mathematic model of FSIG, supercapacitor(SC) and converter is built in DIgSILENT in this paper. A control strategy for FSIG and SC based on wind farms is proposed to enhance the terminal voltage of point of common coupling (PCC) after the clearance of an external short circuit fault. The simulation results show that the terminal voltage of PCC can be significantly improved when there is extra active and reactive power compensation available from SC.


Sign in / Sign up

Export Citation Format

Share Document