Doubly Fed of Induction Generators Wind Turbine Frequency Control Based on Power Curve of Inertia Control and Pitch Angle Control

2014 ◽  
Vol 1070-1072 ◽  
pp. 228-232
Author(s):  
Xiao Ying Zhang ◽  
Si Wen Li

With many grid-connected wind farms of Doubly-fed Induction Generator (DFIG) type taking the palce of conventional synchronous generators, the frequency control ability of the system will decrease. But the existing control strategy based on maximum wind power tracking of DFIG can not response to the deviation of the system frequency. This paper proposes a new hybrid frequency control strategy based on the research of the frequency response to the doubly fed induction wind turbine curves switching inertia control loop and the ability for the pitch angle control participating in the system primary frequency modulation. The strategy reduces the initial rate of change and the steady state error of system frequency with the combined action of the curves switching inertial control and pitch frequency control. Finally, the simulation results of the two areas with four generators validate the effectiveness of the strategy.

2012 ◽  
Vol 512-515 ◽  
pp. 788-793
Author(s):  
Xiao Hua Zhou ◽  
Ming Qiang Wang ◽  
Wei Wei Zou

Traditional decoupling control strategy of doubly-fed induction generator (DFIG) wind turbine makes little contribution to system inertia and do not participate in the system frequency control, the synchronization of large-scale wind power requires wind turbine have the ability to participate in the regulation of power system frequency. This paper adds a frequency control segment to traditional DFIG wind turbine and considers the doubly-fed wind turbine operating on the state of the super-synchronous speed, by analysis the effect of inertia and proportional control strategies, a fuzzy control strategy which combines the advantages of the former two control strategies is proposed, simulation results show that this control strategy can more effectively improve the system frequency response.


Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1067
Author(s):  
Youming Cai ◽  
Zheng Li ◽  
Xu Cai

It is important to reduce the impact of the high penetration of wind power into the electricity supply for the purposes of the security and stability of the power grid. As such, the inertia capability of wind farms has become an observation index. The existing control modes cannot guarantee the wind turbine to respond to the frequency variation of the grid, hence, it may lead to frequency instability as the penetration of wind power gets much higher. For the stability of the power grid, a simple and applicable method is to realize inertia response by controlling wind farms based on a high-speed communication network. Thus, with the consideration of the inertia released by a wind turbine at its different operating points, the inertia control mechanism of a doubly-fed wind turbine is analyzed firstly in this paper. The optimal exit point of inertia control is discussed. Then, an active power control strategy for wind farms is proposed to reserve the maximum inertia under a given power output constraint. Furthermore, turbines in a wind farm are grouped depending on their inertia capabilities, and a wind farm inertia control strategy for reasonable extraction of inertia is then presented. Finally, the effectiveness of the proposed control strategy is verified by simulation on the RT-LAB (11.3.3, OPAL-RT TECHNOLOGIES, Montreal, Quebec, Canada) platform with detailed models of the wind farm.


Author(s):  
Issam Minka ◽  
Ahmed Essadki ◽  
Sara Mensou ◽  
Tamou Nasser

<span lang="EN-US">In this paper, we study the primary frequency control that allows the variable speed Aeolian to participate in the frequency regulation when a failure affects the network frequency. This method based on the control of the generator rotational speed or the control of pitch angle makes it possible to force the wind turbine to produce less power than its maximum available power, consequently we will create an active power reserve. This wind turbine must inject into the grid a part of its power reserve when the frequency drops, in contrary the wind turbine reserves more of energy. So, this work presents the performances of this control strategy for the different wind speed value. The results are obtained by a simulation in the MATLAB/SIMULINK environment.</span>


2020 ◽  
Vol 2 (1) ◽  
pp. 14-26
Author(s):  
Thelfa Ahmad ◽  
Tim Littler ◽  
Wasif Naeem

With increasing levels of wind generation in power systems, guaranteeing continuous power and system’s safety is essential. Frequency control is critical which requires a supplementary inertial control strategy. Since wind power generation depends directly on wind conditions, this creates an immense challenge for a conventional inertial controller with parameters suitable for all power grid operations and wind speed conditions. Therefore, tuning the controller gains is absolutely critical for an integrated conventional/renewable power system. Here, a fuzzy-logic adaptive inertial controller scheme for online tuning of the proportional-derivative-type (PD) inertial controller parameters is proposed. The proposed controller adapts the control parameters of the supplementary inertial control of the doubly fed induction generator (DFIG) wind turbine so that with any disturbance such as load changes, the active power output can be controlled to mitigate the frequency deviation. Simulation results indicate that the proposed adaptive controller demonstrates a more consistent and robust response to load changes compared to a conventional controller with fixed parameters.


2011 ◽  
Vol 347-353 ◽  
pp. 1442-1453
Author(s):  
Ying Cheng Xue ◽  
Neng Ling Tai

The conventional decoupling controls of variable-speed doubly fed wind turbines provide minimal support to the regulation of system frequency. The characteristics of doubly fed induction generator (DFIG) wind turbines and conventional power plans are compared, and the contributions of DFIG to system inertial response and frequency regulation are investigated. The influence of auxiliary loop parameters on the inertial response is illustrated. We also introduce a novel algorithm to enhance the participation of DFIG in existing frequency regulation mechanisms. The proposed approach takes advantage of the fast responses associated with DFIGs. The control system consists of four functional modules, namely, frequency control, rotational speed delay recovery, speed protection, and coordination control with conventional generators. The simulation results show that the control strategy has a fast response speed to the transient frequency error, thereby proving that wind farms can participate in system frequency regulation to a certain extent.


Author(s):  
Wang Yin-Sha ◽  
Li Wen-Yi ◽  
Li Zhi-Wen

Background: With the large-scale Doubly Fed Induction Generator (DFIG) wind turbine integrated into the power system, the DFIG inertia response of the wind turbine should be provided. Also, the frequency response should be similar to the conventional generation technologies. This paper investigated the influence of frequency response term and wind speed conditions on system frequency control. Methods: The specific operating conditions of four control strategies, including inertia control, droop control, over speed control and pitch angle control were researched in this paper. Multi-factor coordinated frequency control strategy of DFIG wind turbine was established based on the above researches. The strategy was composed of wind speed ranging from low to high. Results: According to the simulation results, the DFIG wind turbine, which was based on multifactor coordinated frequency control strategy, could respond to the system’s frequency change of power grid, effectively. Conclusion: It helps system frequency return to stable states better and faster than DFIG wind turbine and also could reduce the fluctuation of system frequency.


2020 ◽  
Vol 10 (10) ◽  
pp. 3376 ◽  
Author(s):  
Dejian Yang ◽  
Enshu Jin ◽  
Jiahan You ◽  
Liang Hua

As the penetrated level of wind in power grids increases, the online system inertia becomes weak. Doubly-fed induction generator (DFIG)-based wind turbine generators (WTGs) are required to provide virtual inertia response to support system frequency. The present inertia control strategy with fixed control gain is not suitable and may cause stall of the DFIG-based WTG, as the virtual inertia response potential from the DFIG-based WTG is different with various wind speed conditions. This paper addresses a virtual inertia control method for the DFIG-based WTGs to improve the system frequency stability without causing stalling of the wind turbine for various wind speed conditions. The effectiveness of the proposed virtual inertia control method is investigated in a small system embedded with the DFIG-based WTG. Results demonstrate that the proposed virtual inertia strategy improves the frequency stability without causing the rotor speed security issue. Thus, the proposed control strategy can secure the dynamic system frequency security of power systems under the scenarios of full and partial loads, and, consequently, the proposed method provides a promising solution of ancillary services to power systems.


Energies ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 38 ◽  
Author(s):  
Xiangwu Yan ◽  
Zijun Song ◽  
Yun Xu ◽  
Ying Sun ◽  
Ziheng Wang ◽  
...  

Large-scale wind farms connect to the grid and deliver electrical energy to the load center. When a short-circuit fault occurs on the transmission line, there will be an excess of electric power, but the power demand will increase instantaneously once the fault is removed. The conventional additional frequency control strategies of wind farms can effectively reduce the frequency fluctuation caused by load mutation, but still there are some limitations for the frequency fluctuation caused by the whole process of occurrence, development and removal of a short-circuit fault on the transmission line. Therefore, this paper presents an improved additional frequency control strategy for wind farms. According to the variation law of system frequency during the whole process of a short-circuit fault, the proposed strategy revises the parameters in conventional additional frequency control of the doubly-fed induction generator (DFIG) to have effective damping characteristics throughout the entire process from failure to removal, thereby the output power of DFIGs could respond to frequency fluctuation rapidly. MATLAB/ Simulink is used to build a four-machine two-area model for simulation analysis. The results show that the control strategy can effectively reduce the frequency fluctuation of DFIGs, and enhance the stability of the system.


Sign in / Sign up

Export Citation Format

Share Document