Research of SC for Improving LVRT Capability of FSIG

2012 ◽  
Vol 512-515 ◽  
pp. 758-762
Author(s):  
Guo Qing Li ◽  
Li Meng Wang

The fast development of wind power generation brings new requirements for wind turbine integration to grid. In order to improve the lower voltage ride through(LVRT) capability of fixed speed induction generator(FSIG) in wind power generating systems, the mathematic model of FSIG, supercapacitor(SC) and converter is built in DIgSILENT in this paper. A control strategy for FSIG and SC based on wind farms is proposed to enhance the terminal voltage of point of common coupling (PCC) after the clearance of an external short circuit fault. The simulation results show that the terminal voltage of PCC can be significantly improved when there is extra active and reactive power compensation available from SC.

Author(s):  
Vijaya Anand N, Hema Latha J, G Devadasu, Kumar C

Distributed generation (DG) sources often interfaced with grid by a Cascaded H-bridge multilevel inverter with a remote D.C source. The interface inverter has to adapt voltage on the either side of the grid and DG source while it has a control of active and reactive power exchange. The inverter terminal voltage is maintained based on frequency switching technique. However, in applications like micro grids are based on quality of output voltage at the point of common coupling. The present paper discusses an optimal frequency switching methodology that generates optimal fringing angle based on an evolutionary computing technique while maintaining the voltage level at PCC with a reduced harmonic distortion.  Efficacy of the proposed method is illustrated by simulating a 9-level cascaded H bridge in MATLAB environment.


Author(s):  
Bineeta Mukhopadhyay ◽  
Rajib Kumar Mandal ◽  
Girish Kumar Choudhary

<span lang="EN-US">When severe voltage sags occur in weak power systems associated with grid-connected wind farms employing doubly fed induction generators, voltage instability occurs which may lead to forced disconnection of wind turbine. Shunt flexible AC transmission system devices like static synchronous compensator (STATCOM) may be harnessed to provide voltage support by dynamic injection of reactive power. In this work, the STATCOM provided voltage compensation at the point of common coupling in five test cases, namely, simultaneous occurrence of step change (drop) in wind speed and dip in grid voltage, single line to ground, line to line, double line to ground faults and sudden increment in load by more than a thousand times. Three techniques were employed to control the STATCOM, namely, fuzzy logic, particle swarm optimization and a combination of both. A performance comparison was made among the three soft computing techniques used to control the STATCOM on the basis of the amount of voltage compensation offered at the point of common coupling. The simulations were done with the help of SimPowerSystems available with MATLAB / SIMULINK and the results validated that the STATCOM controlled by all the three techniques offered voltage compensation in all the cases considered.</span>


2019 ◽  
Vol 31 (4) ◽  
pp. 570-582 ◽  
Author(s):  
Muhammad Shahzad Nazir ◽  
Ahmed N Abdalla

Energy sources, such as wind, solar, hydro, etc., are an important source of energy, and wind power generators are important energy conversion machines. The doubly fed induction generator has wide industrial and commercial applications due to its superior performance, combined with fault and eco-friendly properties. However, the fault current dynamics of wind farms identify the potential impacts of fault currents and the voltage on the protection. This study focuses on wind farms (employing doubly fed induction generators) perturbation during symmetrical (three-phase) symmetrical short circuit (SSC) at different points. The detail of analyzing the doubly fed induction generator (DFIG) performance during transient conditions, control and modeling is studied in this paper. These two points are selected as grid-side converter and point of common coupling, respectively. These comparison results fetched the more precise understanding of the fault diagnosis reliability with reduced complexity, stability, and optimization of the system. The present findings illustrated the main difference between point of common coupling and grid-side converter under SSC faults and the robustness of these two mentioned points.


Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3485
Author(s):  
Seyed Morteza Alizadeh ◽  
Sakineh Sadeghipour ◽  
Cagil Ozansoy ◽  
Akhtar Kalam

Wind Power Plants (WPPs) are generally located in remote areas with weak distribution connections. Hence, the value of Short Circuit Capacity (SCC), WPP size and the short circuit impedance angle ratio (X/R) are all very critical in the voltage stability of a distribution system connected WPP. This paper presents a new voltage stability model based on the mathematical relations between voltage, the level of wind power penetration, SCC and X/R at a given Point of Common Coupling (PCC) of a distribution network connected WPP. The proposed model introduces six equations based on the SCC and X/R values seen from a particular PCC point. The equations were developed for two common types of Wind Turbine Generators (WTGs), including: the Induction Generator (IG) and the Double Fed Induction Generator (DFIG). Taking advantage of the proposed equations, design engineers can predict how the steady-state PCC voltage will behave in response to different penetrations of IG- and DFIG-based WPPs. In addition, the proposed equations enable computing the maximum size of the WPP, ensuring grid code requirements at the given PCC without the need to carry out complex and time-consuming computational tasks or modelling of the system, which is a significant advantage over existing WPP sizing approaches.


2016 ◽  
Vol 10 (8) ◽  
pp. 1
Author(s):  
Faraz Chamani ◽  
Mohammad Satkin

Wind energy is one of the extraordinary sources of renewable energy due to its clean character and free availability. With increase in wind power penetration, the wind farms are directly influencing the power systems. The majority of wind farms are using variable speed wind turbines equipped with doubly fed induction generators (DFIG) due to their advantages over other wind turbine generators (WTGs). Therefore, the analysis of wind power dynamics with the DFIG wind turbines has become a very important research issue, especially during transient faults. In this article, a controller is provided to control the active and reactive power of a wind system equipped with doubly fed induction generator. The generator is connected to the grid by a back to back converter that gets benefit from control system known as single periodic controller. Grid and generator side converters respectively control the generator speed and reactive power using proposed controller. In order to increase the accuracy of controller, we optimized its PI parameters using genetic optimization algorithm. Finally, simulation results conducted by the MATLAB software are shown. The results of simulation gained through this system, show the capability of proposed controller under error conditions for controlling active and reactive power and also elimination of harmonics caused by non-linear load.


Author(s):  
Azeddine Loulijat ◽  
Najib Ababssi ◽  
Mohammed Makhad

In the wind power area, Doubly Fed Induction Generator (DFIG) has many advantages due to its ability to provide power to voltage and constant frequency during rotor speed changes, which provides better wind capture as compared to fixed speed wind turbines (WTs). The high sensitivity of the DFIG towards electrical faults brings up many challenges in terms of compliance with requirements imposed by the operators of electrical networks. Indeed, in case of a fault in the network, wind power stations are switched off automatically to avoid damage in wind turbines, but now the network connection requirements impose stricter regulations on wind farms in particular in terms of Low Voltage Ride through (LVRT), and network support capabilities. In order to comply with these codes, it is crucial for wind turbines to redesign advanced control, for which wind turbines must, when detecting an abnormal voltage, stay connected to provide reactive power ensuring a safe and reliable operation of the network during and after the fault. The objective of this work is to offer solutions that enable wind turbines remain connected generators, after such a significant voltage drop. We managed to make an improvement of classical control, whose effectiveness has been verified for low voltage dips. For voltage descents, we proposed protection devices as the Stator Damping Resistance (SDR) and the CROWBAR. Finally, we developed a strategy of combining the solutions, and depending on the depth of the sag, the choice of the optimal solution is performed.


2015 ◽  
Vol 740 ◽  
pp. 397-400
Author(s):  
Min Rui Qiao ◽  
Lin Lin Wu ◽  
Yue Qiao Li

As large-scale wind farms are connected to the grid, a single type compensator cannot meet the demand. STATCOM has ability of rapid reaction and harmonics suppression, SVC can compensate large capacity reactive power. In this study, a compensator, which is able to coordinate Static Var System (SVS) with STATCOM is proposed. Large-scale wind power integration is simulated respectively with the compensator of STATCOM alone and coordinated compensator of SVS and STATCOM by DIgSILENT/Powerfactory15.0. Simulations results clearly verify that the compensator of SVS and STATCOM improves transient stability and performance of the photovoltaic systems.


Sign in / Sign up

Export Citation Format

Share Document