scholarly journals Comparison of Dual-Permanent-Magnet-Excited Machines and Surface-Mounted Permanent Magnet Machines in Terms of Force

Energies ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 216 ◽  
Author(s):  
Minh-Trung Duong ◽  
Do-Hyun Kang ◽  
Yon-Do Chun ◽  
Byung-Chul Woo ◽  
Yoon-Sun Lee ◽  
...  

In this paper, finite element analysis demonstrates the difference between dual-permanent-magnet-excited machines (DPMM) and surface-mounted permanent magnet machines (SPM) in terms of tangential force at the same air gap, diameter, stacking length, and input current. Different from most conventional machines, a novel DPMM has two sets of permanent magnets employed on both stator and rotor. To make a fair comparison, the novel DPMM, based on an original design, is specified to have the same dimensions as a conventional SPM. With the aid of 2D finite element analysis, tangential force generated from the novel DPMM is 167.65% higher than the conventional SPM. To verify the validity of the analyses, a prototype was fabricated and tested. Experiments showed that average deviation was only approximately 1.85%.

2016 ◽  
Vol 78 (9) ◽  
Author(s):  
Izzati Yusri ◽  
Mariam Md Ghazaly ◽  
Esmail Ali Ali Alandoli ◽  
Mohd Fua'ad Rahmat ◽  
Zulkeflee Abdullah ◽  
...  

This paper addresses a rotary motion type of electromagnetic actuator that compares two types of electromagnetic actuators; i.e the Permanent Magnet Switching Flux (PMSF) and the Switching Reluctance (SR) actuator. The Permanent Magnet Switching Flux (PMSF) actuator is the combination of permanent magnets (PM) and the Switching Reluctance (SR) actuator. The force optimizations are accomplished by manipulating the actuator parameters; i.e. (i) the poles ratio of the stator and rotor; (ii) the actuator’s size; (iii) the number of winding turns; and (iv) the air gap thickness between the stator and rotor through Finite Element Analysis Method (FEM) using the ANSYS Maxwell 3D software. The materials implemented in the actuator’s parameters optimizations are readily available materials, especially in Malaysia. The excitation current used in FEM analysis for both actuators was between 0A and 2A with interval of 0.25A. Based on the FEM analyses, the best result was achieved by the Permanent Magnet Switching Flux (PMSF) actuator. The PMSF actuator produced the largest magnetostatic thrust force (4.36kN) once the size is scaled up to 100% with the input current, 2A respectively. The maximum thrust force generated by the Switching Reluctance (SR) actuator was 168.85μN, which is significantly lower in compared to the results of the PMSF actuator. 


2011 ◽  
Vol 179-180 ◽  
pp. 1303-1308
Author(s):  
Guang Hui Wang

In terms of various applications of linear motor, there are different design objectives with varying concerns. In this paper, the objective is to obtain the slot/pole ratio for tubular permanent-magnet linear synchronous motor (TPMLSM). Direct-axis current analysis and finite element technique are utilized to investigate the optimal slot/slot ratio design of the TPMLSM. Based on electrical angle drift of slots between two neighboring permanent magnets, the slot/pole ratio (SPR), one of the key factors in design, is deduced by direct-axis current analysis. In contrast to those experiment methods, the proposed technique is convenient and swift; moreover it is proven that the method is efficient by 2-D axisymmetic finite element analysis.


Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 384 ◽  
Author(s):  
Hyunwoo Kim ◽  
Yeji Park ◽  
Huai-Cong Liu ◽  
Pil-Wan Han ◽  
Ju Lee

In order to improve the efficiency, a line-start synchronous reluctance motor (LS-SynRM) is studied as an alternative to an induction motor (IM). However, because of the saliency characteristic of SynRM, LS-SynRM have a limited power factor. Therefore, to improve the efficiency and power factor of electric motors, we propose a line-start permanent magnet assistance synchronous reluctance motor (LS-PMA-SynRM) with permanent magnets inserted into LS-SynRM. IM and LS-SynRM are selected as reference models, whose performances are analyzed and compared with that of LS-PMA-SynRM using a finite element analysis. The performance of LS-PMA-SynRM is analyzed considering the position and length of its permanent magnet, as well as its manufacture. The final model of LS-PMA-SynRM is designed for improving the efficiency and power factor of electric motors compared with LS-SynRM. To verify the finite element analysis (FEA) result, the final model is manufactured, experiments are conducted, and the performance of LS-PMA-SynRM is verified.


2013 ◽  
Vol 416-417 ◽  
pp. 121-126
Author(s):  
Y.J. Zhou ◽  
Z.Q. Zhu ◽  
Robert Nilssen

This paper proposes a linear sandwiched switched flux permanent magnet (LSSFPM) machine and two double-sided linear switched flux permanent magnet (LSFPM) machines havingtoroidal windings. Bothmachines are optimized and then compared with the conventional 6-slot/5-pole LSFPM machine. It is found that the proposed machines exhibithigher magnet usage efficiencies than the conventional LSFPM machine, and the double-sided machines show shorter end-windings, which are benefited from toroidal windings. The performance, including back-EMF, cogging force and average thrust force, are analyzedby two-dimensional (2-D) finite element analysis (FEA).


2017 ◽  
Vol 54 (1) ◽  
pp. 3-11 ◽  
Author(s):  
O. Kudrjavtsev ◽  
A. Kallaste ◽  
A. Kilk ◽  
T. Vaimann ◽  
S. Orlova

Abstract The paper discusses problems concerning the influence of permanent magnet material characteristics on the low-speed permanent magnet generator losses and output characteristics. The variability of the magnet material and its effect on the output parameters of the machine has been quantified. The characteristics of six different grades of neodymium permanent magnets have been measured and compared to the supplier specification data. The simulations of the generator have been carried out using transient finite element analysis. The results show that magnet materials from different suppliers have different characteristics, which have a significant influence on the generator output parameters, such as efficiency and power factor.


2012 ◽  
Vol 614-615 ◽  
pp. 1250-1253
Author(s):  
Tong Shan Diao ◽  
Xiu He Wang

Many reliable energy conversion methods are constantly being sought for renewable energy applications. The permanent magnet induction generator is a new concept which uses permanent magnets to provide the flux in the machine. This will lead to an improved power factor and higher efficiency. This type of generator is a very attractive renewable solution. In this paper ,firstly,introduce the structure and principle of permanent magnet induction generator. Secondly, the dynamic starting performance of this machine is studied. Finally, finite element analysis and simulation are carried out, the results verify the performance of the machine meet the design requirements.


Sign in / Sign up

Export Citation Format

Share Document