Slot/Pole Ratio Design of Tubular Permanent Magnet Linear Synchronous Motor

2011 ◽  
Vol 179-180 ◽  
pp. 1303-1308
Author(s):  
Guang Hui Wang

In terms of various applications of linear motor, there are different design objectives with varying concerns. In this paper, the objective is to obtain the slot/pole ratio for tubular permanent-magnet linear synchronous motor (TPMLSM). Direct-axis current analysis and finite element technique are utilized to investigate the optimal slot/slot ratio design of the TPMLSM. Based on electrical angle drift of slots between two neighboring permanent magnets, the slot/pole ratio (SPR), one of the key factors in design, is deduced by direct-axis current analysis. In contrast to those experiment methods, the proposed technique is convenient and swift; moreover it is proven that the method is efficient by 2-D axisymmetic finite element analysis.

2016 ◽  
Vol 78 (9) ◽  
Author(s):  
Izzati Yusri ◽  
Mariam Md Ghazaly ◽  
Esmail Ali Ali Alandoli ◽  
Mohd Fua'ad Rahmat ◽  
Zulkeflee Abdullah ◽  
...  

This paper addresses a rotary motion type of electromagnetic actuator that compares two types of electromagnetic actuators; i.e the Permanent Magnet Switching Flux (PMSF) and the Switching Reluctance (SR) actuator. The Permanent Magnet Switching Flux (PMSF) actuator is the combination of permanent magnets (PM) and the Switching Reluctance (SR) actuator. The force optimizations are accomplished by manipulating the actuator parameters; i.e. (i) the poles ratio of the stator and rotor; (ii) the actuator’s size; (iii) the number of winding turns; and (iv) the air gap thickness between the stator and rotor through Finite Element Analysis Method (FEM) using the ANSYS Maxwell 3D software. The materials implemented in the actuator’s parameters optimizations are readily available materials, especially in Malaysia. The excitation current used in FEM analysis for both actuators was between 0A and 2A with interval of 0.25A. Based on the FEM analyses, the best result was achieved by the Permanent Magnet Switching Flux (PMSF) actuator. The PMSF actuator produced the largest magnetostatic thrust force (4.36kN) once the size is scaled up to 100% with the input current, 2A respectively. The maximum thrust force generated by the Switching Reluctance (SR) actuator was 168.85μN, which is significantly lower in compared to the results of the PMSF actuator. 


2012 ◽  
Vol 529 ◽  
pp. 322-326
Author(s):  
Cai Xia Gao ◽  
Chen Hao ◽  
Yue Bing Zhao

A two-dimensional finite element model of PMLSM is build based on the finite element analysis software Magnet to research the diagnosis of stator winding inter-turn short circuit fault in PMLSM. The velocity, thrust, the stator current performance curve are obtained by simulation using Magnet when PMLSM is normal and under different extent inter-turn short circuit fault, the harmonic content of speed and thrust are analyzed using Matlab / Simulink , the conclusion that the thrust of the harmonic content is used as the Permanent Magnet Linear Synchronous Motor (PMLSM) stator inter-turn short circuit fault feature is proposed , which provided a basis for detection of stator winding inter-turn short circuit fault in PMLSM.


Sign in / Sign up

Export Citation Format

Share Document