scholarly journals Hydraulic Fracture Design with a Proxy Model for Unconventional Shale Gas Reservoir with Considering Feasibility Study

Energies ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 220 ◽  
Author(s):  
Kyoungsu Kim ◽  
Jonggeun Choe

Shale gas is a natural gas trapped in shale formation and is being actively developed in North America. Due to the low permeability of a shale gas reservoir in the range from 10−8 to 10−6 Darcy, horizontal drilling and multi-stage hydraulic fracturing are needed for its development. This paper presents a fast and reliable proxy model to forecast shale gas productions and an optimum hydraulic fracturing design for its development. The proxy model uses a robust regression scheme and can replace a commercial reservoir simulator. The proxy model proposed can determine the influence of impact factors on the production at each production time. The calculation speed of the proposed proxy model is about 1.4 million times faster than that of a reservoir simulator compared. The most economical hydraulic fracture design using the proxy model has a length of 168 m at each stage, which is determined by examining a large number of hydraulic fracturing designs considering economic feasibility.

2021 ◽  
Author(s):  
Mingjun Chen ◽  
Peisong Li ◽  
Yili Kang ◽  
Xinping Gao ◽  
Dongsheng Yang ◽  
...  

Abstract The low flowback efficiency of fracturing fluid would severely increase water saturation in a near-fracture formation and limit gas transport capacity in the matrix of a shale gas reservoir. Formation heat treatment (FHT) is a state-of-the-art technology to prevent water blocking induced by fracturing fluid retention and accelerate gas desorption and diffusion in the matrix. A comprehensive understanding of its formation damage removal mechanisms and determination of production improvement is conducive to enhancing shale gas recovery. In this research, the FHT simulation experiment was launched to investigate the effect of FHT on gas transport capacity, the multi-field coupling model was established to determine the effective depth of FHT, and the numerical simulation model of the shale reservoir was established to analyze the feasibility of FHT. Experimental results show that the shale permeability and porosity were rising overall during the FHT, the L-1 permeability increased by 30- 40 times, the L-2 permeability increased by more than 100 times. The Langmuir pressure increased by 1.68 times and the Langmuir volume decreased by 26%, which means the methane desorption efficiency increased. Results of the simulation demonstrate that the FHT process can practically improve the effect of hydraulic fracturing and significantly increase the well production capacity. The stimulation mechanisms of the FHT include thermal stress cracking, organic matter structure changing, and aqueous phase removal. Furthermore, the special characteristics of the supercritical water such as the strong oxidation, can not be ignored, due to the FHT can assist the retained hydraulic fracturing fluid to reach the critical temperature and pressure of water and transform to the supercritical state. The FHT can not only alleviate the formation damage induced by the fracturing fluid, but also make good use of the retained fracturing fluid to enhance the permeability of a shale gas reservoir, which is an innovative method to dramatically enhance gas transport capacity in shale matrix.


2012 ◽  
Vol 524-527 ◽  
pp. 1532-1536 ◽  
Author(s):  
Jin Jun Wu ◽  
Li Cai Liu ◽  
Guo Hua Zhao ◽  
Xiao San Chu

The reserves of Chinese shale gas is very rich, but still haven’t ever formed a mature technology. According to Chinese shale gas reservoir characteristics, the development technology situation and the principle of high energy gas fracturing, the research and exploration of HEGF stimulation integrated technology which is suitable for the development of Chinese shale gas reservoir need to be carried out. Through a series of analysis and study, compositing high energy gas fracturing technology achievements, this paper discusses the research idea and feasibility of the integrated technology, formed by the liquid gunpowder fracturing technology, in-fracture deeply explosive fracturing technology in low permeability oil layers, composite perforating technology, the multi-pulse fracturing technology and the hydraulic fracturing, simultaneous fracturing ,which transforms shale gas reservoir and develops shale gas. Launching field application test is suggested, and studying the way to optimize the theory and design method of integrated technology, so as to promote the development of shale gas.


2016 ◽  
Vol 31 ◽  
pp. 612-657 ◽  
Author(s):  
C.R. Clarkson ◽  
B. Haghshenas ◽  
A. Ghanizadeh ◽  
F. Qanbari ◽  
J.D. Williams-Kovacs ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document