scholarly journals Short-Term Photovoltaic Power Output Prediction Based on k-Fold Cross-Validation and an Ensemble Model

Energies ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1220 ◽  
Author(s):  
Ruijin Zhu ◽  
Weilin Guo ◽  
Xuejiao Gong

Short-term photovoltaic power forecasting is of great significance for improving the operation of power systems and increasing the penetration of photovoltaic power. To improve the accuracy of short-term photovoltaic power forecasting, an ensemble-model-based short-term photovoltaic power prediction method is proposed. Firstly, the quartile method is used to process raw data, and the Pearson coefficient method is utilized to assess multiple features affecting the short-term photovoltaic power output. Secondly, the structure of the ensemble model is constructed, and a k-fold cross-validation method is used to train the submodels. The prediction results of each submodel are merged. Finally, the validity of the proposed approach is verified using an actual data set from State Power Investment Corporation Limited. The simulation results show that the quartile method can find outliers which contributes to processing the raw data and improving the accuracy of the model. The k-fold cross-validation method can effectively improve the generalization ability of the model, and the ensemble model can achieve higher prediction accuracy than a single model.

2017 ◽  
Vol 75 ◽  
pp. 242-263 ◽  
Author(s):  
Florian Barbieri ◽  
Sumedha Rajakaruna ◽  
Arindam Ghosh

2019 ◽  
Vol 23 (1) ◽  
pp. 67-77 ◽  
Author(s):  
Yao Yevenyo Ziggah ◽  
Hu Youjian ◽  
Alfonso Rodrigo Tierra ◽  
Prosper Basommi Laari

The popularity of Artificial Neural Network (ANN) methodology has been growing in a wide variety of areas in geodesy and geospatial sciences. Its ability to perform coordinate transformation between different datums has been well documented in literature. In the application of the ANN methods for the coordinate transformation, only the train-test (hold-out cross-validation) approach has usually been used to evaluate their performance. Here, the data set is divided into two disjoint subsets thus, training (model building) and testing (model validation) respectively. However, one major drawback in the hold-out cross-validation procedure is inappropriate data partitioning. Improper split of the data could lead to a high variance and bias in the results generated. Besides, in a sparse dataset situation, the hold-out cross-validation is not suitable. For these reasons, the K-fold cross-validation approach has been recommended. Consequently, this study, for the first time, explored the potential of using K-fold cross-validation method in the performance assessment of radial basis function neural network and Bursa-Wolf model under data-insufficient situation in Ghana geodetic reference network. The statistical analysis of the results revealed that incorrect data partition could lead to a false reportage on the predictive performance of the transformation model. The findings revealed that the RBFNN and Bursa-Wolf model produced a transformation accuracy of 0.229 m and 0.469 m, respectively. It was also realised that a maximum horizontal error of 0.881 m and 2.131 m was given by the RBFNN and Bursa-Wolf. The obtained results per the cadastral surveying and plan production requirement set by the Ghana Survey and Mapping Division are applicable. This study will contribute to the usage of K-fold cross-validation approach in developing countries having the same sparse dataset situation like Ghana as well as in the geodetic sciences where ANN users seldom apply the statistical resampling technique.


Sign in / Sign up

Export Citation Format

Share Document