Hierarchically Non-continuous Regression Prediction for Short-Term Photovoltaic Power Output

Author(s):  
SiYa Yao ◽  
Le Pan ◽  
ZiBo Yu ◽  
Qi Kang ◽  
MengChu Zhou
Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3247 ◽  
Author(s):  
Dongkyu Lee ◽  
Jinhwa Jeong ◽  
Sung Hoon Yoon ◽  
Young Tae Chae

The time resolution and prediction accuracy of the power generated by building-integrated photovoltaics are important for managing electricity demand and formulating a strategy to trade power with the grid. This study presents a novel approach to improve short-term hourly photovoltaic power output predictions using feature engineering and machine learning. Feature selection measured the importance score of input features by using a model-based variable importance. It verified that the normative sky index in the weather forecasted data had the least importance as a predictor for hourly prediction of photovoltaic power output. Six different machine-learning algorithms were assessed to select an appropriate model for the hourly power output prediction with onsite weather forecast data. The recurrent neural network outperformed five other models, including artificial neural networks, support vector machines, classification and regression trees, chi-square automatic interaction detection, and random forests, in terms of its ability to predict photovoltaic power output at an hourly and daily resolution for 64 tested days. Feature engineering was then used to apply dropout observation to the normative sky index from the training and prediction process, which improved the hourly prediction performance. In particular, the prediction accuracy for overcast days improved by 20% compared to the original weather dataset used without dropout observation. The results show that feature engineering effectively improves the short-term predictions of photovoltaic power output in buildings with a simple weather forecasting service.


Energies ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1220 ◽  
Author(s):  
Ruijin Zhu ◽  
Weilin Guo ◽  
Xuejiao Gong

Short-term photovoltaic power forecasting is of great significance for improving the operation of power systems and increasing the penetration of photovoltaic power. To improve the accuracy of short-term photovoltaic power forecasting, an ensemble-model-based short-term photovoltaic power prediction method is proposed. Firstly, the quartile method is used to process raw data, and the Pearson coefficient method is utilized to assess multiple features affecting the short-term photovoltaic power output. Secondly, the structure of the ensemble model is constructed, and a k-fold cross-validation method is used to train the submodels. The prediction results of each submodel are merged. Finally, the validity of the proposed approach is verified using an actual data set from State Power Investment Corporation Limited. The simulation results show that the quartile method can find outliers which contributes to processing the raw data and improving the accuracy of the model. The k-fold cross-validation method can effectively improve the generalization ability of the model, and the ensemble model can achieve higher prediction accuracy than a single model.


Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 2163 ◽  
Author(s):  
Yusen Wang ◽  
Wenlong Liao ◽  
Yuqing Chang

Photovoltaic power has great volatility and intermittency due to environmental factors. Forecasting photovoltaic power is of great significance to ensure the safe and economical operation of distribution network. This paper proposes a novel approach to forecast short-term photovoltaic power based on a gated recurrent unit (GRU) network. Firstly, the Pearson coefficient is used to extract the main features that affect photovoltaic power output at the next moment, and qualitatively analyze the relationship between the historical photovoltaic power and the future photovoltaic power output. Secondly, the K-means method is utilized to divide training sets into several groups based on the similarities of each feature, and then GRU network training is applied to each group. The output of each GRU network is averaged to obtain the photovoltaic power output at the next moment. The case study shows that the proposed approach can effectively consider the influence of features and historical photovoltaic power on the future photovoltaic power output, and has higher accuracy than the traditional methods.


Sign in / Sign up

Export Citation Format

Share Document