scholarly journals Series-Series/Series Compensated Inductive Power Transmission System with Symmetrical Half-Bridge Resonant Converter: Design, Analysis, and Experimental Assessment

Energies ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2268 ◽  
Author(s):  
Jianfeng Hong ◽  
Mingjie Guan ◽  
Zaifa Lin ◽  
Qiu Fang ◽  
Wei Wu ◽  
...  

In order to compensate the large leakage inductance and improve the power transmission capacity, capacitors are widely used in inductive power transfer (IPT) systems, which results in high voltage or current stresses in the resonant tanks and limits higher volt-ampere (VA) rating of the transfer power, especially in medium and low frequency applications. This paper presents a symmetrical half-bridge resonant converter (SHRC) for series-series/series compensated IPT systems with detailed analysis and design. It operates at a relatively low frequency of 12.5 kHz, suitable for IGBT applications. The theoretical analysis shows that, compared with full-bridge resonant converter (FRC) for IPT, the symmetrical half-bridge resonant converter achieves a higher efficiency. Simulation and a prototype of 1500 W power output were built to verify the theoretical analysis. The experimental results show that the power loss of SHRC is 39.7 W while that of FRC is 79.4 W, which is consistent with the theoretical analysis. The global efficiency of the IPT based on the proposed converter is 91.6%.

2021 ◽  
Vol 12 (4) ◽  
pp. 267
Author(s):  
Naoui Mohamed ◽  
Flah Aymen ◽  
Mohammed Alqarni

The effectiveness of inductive power transfer (IPT) presents a serious challenge for improving the global recharge system performance. An electric vehicle (EVs) needs to be charged rapidly and have maximum power when it is charged with wireless technology. Based on various research, the performance of this recharge system is attached to several points and the frequency resonance is one of those parameters that can influence. In this paper, we try to explore the relationship between the obtained power and the signal input frequency for charging a lithium battery, solve the class imbalance problem and understand the maximum allowed frequency. To obtain the results, a mathematical model was first created to demonstrate the relationship, then the dynamic model was validated and tested using the Matlab Simulink platform. The performance of the worldwide wireless recharging system in terms of frequency variation is depicted in a summary graph.


Sign in / Sign up

Export Citation Format

Share Document