scholarly journals Profit Maximizing Control of a Microgrid with Renewable Generation and BESS Based on a Battery Cycle Life Model and Energy Price Forecasting

Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2904 ◽  
Author(s):  
Wenhao Zhuo ◽  
Andrey V. Savkin

In this paper, an optimal control strategy is presented for grid-connected microgrids with renewable generation and battery energy storage systems (BESSs). In order to optimize the energy cost, the proposed approach utilizes predicted data on renewable power, electricity price, and load demand within a future period, and determines the appropriate actions of BESSs to control the actual power dispatched to the utility grid. We formulate the optimization problem as a Markov decision process and solve it with a dynamic programming algorithm under the receding horizon approach. The main contribution in this paper is a novel cost model of batteries derived from their life cycle model, which correlates the charge/discharge actions of batteries with the cost of battery life loss. Most cost models of batteries are constructed based on identifying charge–discharge cycles of batteries on different operating conditions, and the cycle counting methods used are analytical, so cannot be expressed mathematically and used in an optimization problem. As a result, the cost model proposed in this paper is a recursive and additive function over control steps that will be compatible with dynamic programming and can be included in the objective function. We test the proposed approach with actual data from a wind farm and an energy market operator.

Author(s):  
Nicoleta Liviana Tudor

<p>A method to optimize the access at the objects of a relational database is through the optimization of the queries. This article presents an approach of the cost model used in optimization of Select-Project-Join (SPJ) queries with conjunction of predicates and proposes a join optimization algorithm named System RO-H (System Rank Ordering Heuristic). The System RO-H algorithm for optimizing SPJ queries with conjunction of predicates is a System R Dynamic Programming algorithm that extends optimal linear join subplans using a rank-ordering heuristic method as follows: choosing a predicate in ascending order according to the h-metric, where the h-metric depends on the selectivity and the cost per tuple of the predicate, using an expression with heuristic constants.<br />The System Rank-Ordering Heuristic algorithm finds an optimal plan in the space of linear left deep join trees. The System RO-H algorithm saves not a single plan, but multiple optimal plans for every subset, one for each distinct such order, termed interesting order. In order to build an optimal execution plan for a set S of i relations, the optimal plan for each subset of S, consisting of i-1 relations is extended, using the Lemma based on a h-metric for predicates. Optimal plans for subsets are stored and reused. The optimization algorithm chooses a plan of least cost from the execution space.</p>


1990 ◽  
Vol 43 (1) ◽  
pp. 104-117 ◽  
Author(s):  
R. H. Motte ◽  
S. Calvert

The purpose of this paper is to show the effect of incorporating various discrete grid systems in a micro-based, ship weather-routeing system, which employs Bellman's dynamic programming algorithm, and either a cost-objective or time-objective performance measure. A simple ship speed and power function is utilized, in the cost computation. The calculation of the least-cost/least-time route is briefly described, but it is the derivation of the discrete grids and their influence on the route decisions that forms the paper's emphasis. The measure of cost within this paper is necessarily notional.


Author(s):  
Jin Yu ◽  
Pengfei Shen ◽  
Zhao Wang ◽  
Yurun Song ◽  
Xiaohan Dong

Heavy duty vehicles, especially special vehicles, including wheel loaders and sprinklers, generally work with drastic changes in load. With the usage of a conventional hydraulic mechanical transmission, they face with these problems such as low efficiency, high fuel consumption and so forth. Some scholars focus on the research to solve these issues. However, few of them take into optimal strategies the fluctuation of speed ratio change, which can also cause a lot of problems. In this study, a novel speed regulation is proposed which cannot only solve problems above but also overcome impact caused by speed ratio change. Initially, based on the former research of the Compound Coupled Hydro-mechanical Transmission (CCHMT), the basic characteristics of CCHMT are analyzed. Besides, to solve these problems, dynamic programming algorithm is utilized to formulate basic speed regulation strategy under specific operating condition. In order to reduce the problem caused by speed ratio change, a new optimization is applied. The results indicate that the proposed DP optimal speed regulation strategy has better performance on reducing fuel consumption by up to 1.16% and 6.66% in driving cycle JN1015 and in ECE R15 working condition individually, as well as smoothing the fluctuation of speed ratio by up to 12.65% and 19.01% in those two driving cycles respectively. The processes determining the speed regulation strategy can provide a new method to formulate the control strategies of CCHMT under different operating conditions particularlly under real-world conditions.


Sign in / Sign up

Export Citation Format

Share Document