scholarly journals Small Signal Stability with the Householder Method in Power Systems

Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3412
Author(s):  
Asghar Sabati ◽  
Ramazan Bayindir ◽  
Sanjeevikumar Padmanaban ◽  
Eklas Hossain ◽  
Mehmet Rida Tur

Voltage collapse in power systems is still considered the greatest threat, especially for the transmission system. This is directly related to the quality of the power, which is characterized by the loss of a stable operating point and the deterioration of voltage levels in the electrical center of the region exposed to voltage collapse. Numerous solution methods have been investigated for this undesirable degradation. This paper focuses on the steady state/dynamic stability subcategory and techniques that can be used to analyze and control the dynamic stability of a power system, especially following a minor disturbance. In particular, the failure of one generator among the network with a large number of synchronous generators will affect other synchronous generators. This will become a major problem and it will be difficult to find or resolve the fault in the network due to there being too many variables, consequently affecting the stability of the entire system. Since the solution of large matrices can be completed more easily in this complex system using the Householder method, which is a small signal stability analysis method that is suggested in the thesis, the detection of error and troubleshooting can be performed in a shorter period of time. In this paper, examples of different rotor angle deviations of synchronous generators were made by simulating rotor angle stability deviations up to five degrees, allowing the system to operate stably, and concluding that the system remains constant.

Author(s):  
Herlambang Setiadi ◽  
Karl O Jones

<p>Utilising additional devices in power systems have been developed by industry. Devices such as a Power System Stabilizer (PSS) and a Superconducting Magnetic Energy Storage (SMES) are commonly employed in industry. This work investigated the coordination of a PSS and SMES applied to a power system to enhance dynamic stability. To obtain optimal coordination, the parameters of the PSS and SMES are tuned using the Firefly Algorithm (FA). The simulation of the power system, PSS, and SMES has been performed using MATLAB and Simulink, and the FA run in Matlab. For testing the small signal stability, the eigenvalue of the system will be investigated, while for dynamic stability the system will be given an external disturbance. The rotor angle and frequency deviation of the power system are compared without a controller, with a PSS and SMES included, and with the PSS and SMES tuned by FA. The simulation results show that the proposed system can improve not only small signal stability (steady state stability) but also dynamic stability.</p>


Author(s):  
Ohnmar Swe

This paper presents the small signal stability of multi-machine power system over the 58-Bus, 26-Machine, Yangon Distribution Network and is validated with MATLAB software under various disturbance conditions. Time-domain solution analysis is employed to determine the small signal dynamic behavior of test system. Transtability model is used to perform time-domain simulation in SIMULINK. The simulation is carried out for normal condition, reference voltage of regulator (Vref) disturbance, mechanical torque (Tm)disturbance and network (fault) disturbance and the conditions of change in center of inertia for rotor angle (delta COI),  slip for center of inertia (slip COI), field current and mechanical torque are observed. According to the simulation results, perturbation of Vref shows only instability on the system. But ramping of Tm and network disturbance can cause large disturbance on the system and unstable conditions can be observed.


2020 ◽  
Vol 10 (24) ◽  
pp. 8855
Author(s):  
Humberto Verdejo ◽  
Pablo Moreira ◽  
Wolfgang Kliemann ◽  
Cristhian Becker ◽  
José Delpiano

This paper presents a general model to carry out a small signal stability analysis in electrical power systems (EPSs) that operate in unbalanced conditions. The classic traditional approach is based on a phase representation where it is supposed that the triphasic electric grid does not suffer any variations during its operation. With the presence of unbalances in transmission lines and loads, it is necessary to develop a general model that allows answering the needs and challenges with which modern electric systems must deal. The present work firstly intends to address the three-phase representation of an EPS, including the controllers. The proposed model is applied to a classical test system, a three machine-nine bus system, considering all the dynamic and algebraic variations associated with angular stability analysis. The proposed approach to small signal stability analysis shows results that differ from the classical analysis. The results are backed up with time domain simulations, and therefore, these results could be used in the calculation of the controllers that operate in unbalanced multimachine systems.


Sign in / Sign up

Export Citation Format

Share Document