scholarly journals Performance Evaluation and Prediction of BIPV Systems under Partial Shading Conditions Using Normalized Efficiency

Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3777
Author(s):  
Chul-sung Lee ◽  
Hyo-mun Lee ◽  
Min-joo Choi ◽  
Jong-ho Yoon

The performance of the Operable Building Integrated Photovoltaic (OBIPV) system applied to the building envelope to reduce the building energy consumption varies significantly depending on the operation method and influence of the surrounding environment. Therefore, optimization through performance monitoring is necessary to maximize power generation of the system. This study used temperature-corrected normalized efficiency (NE*) to evaluate the power generation performance of the operation methods and predict that of the OBIPV system based upon the measured data. It was confirmed that power generation performance decreased when the photovoltaic (PV) operation angle changed, the system remaining the same. A decrease in power generation performance due to partial shading from an overhang was also observed. As a result of the power generation prediction for two months using NE*, the error of the measured values was found to be less than 3%. In addition, with or without any partial shading of the OBIPV system, its performance degradation was predicted with an annual electricity generation decrease by 36 kWh/yr (6.5%). Therefore, NE* can be used as an indicator for evaluating the power generation performance of PV systems, and to predict generation performance considering partial shading.

2019 ◽  
Vol 11 (20) ◽  
pp. 5546 ◽  
Author(s):  
Amy A. Kim ◽  
Dorothy A. Reed ◽  
Youngjun Choe ◽  
Shuoqi Wang ◽  
Carolina Recart

In order to meet renewable energy goals in the near future, the deployment of photovoltaic (PV) panels on buildings will dramatically increase. The objective of this paper is to introduce an improved design for PV cladding systems that will greatly contribute to meeting these renewable energy goals. Typically, building-integrated photovoltaic (BIPV) panels are vertically oriented as cladding and they are not coupled with individual storage batteries. The proposed cladding couples a tilted BIPV panel with one or more storage batteries at each building placement. Thus, the tilted BIPV plus battery system is independent of other power generation in the building and it is referred to as a “building perma-power link” (BPPL) cladding element. Each cladding panel is designed as a stand-alone system, which will be useful for installation, operation, and maintenance. The hyper-redundancy of multiple BPPL cladding panels for a typical building significantly enhances its overall energy resiliency. In order to foster manufacturing ease, each individual cladding unit has been designed at tilts of 45° and 60°. An example of a mid-rise building in Seattle, Washington is provided. The degree of building energy resiliency provided through multiple BPPLs is examined.


Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2471 ◽  
Author(s):  
Choi ◽  
Joo ◽  
Park ◽  
Kim ◽  
Lee

In this study, the long-term operational performance of building-integrated photovoltaic (BIPV) systems was analyzed in the Carbon Zero Building of the National Institute of Environmental Research (NIER) of South Korea, with a total area of 2449 m2. Three types of BIPV modules (glass to glass, glass to Tedlar/crystal, and amorphous) were installed in the building envelopes (roofs, walls, windows, atrium, and pergola) with a total capacity of 116.2 kWp. Over a five-year period, the average annual energy production was 855.6 kWh/kWp, the system loss ranged from 0.14 to 0.31 h/d, and the capture loss ranged from 0.21 to 1.81 h/d. The causes of capture losses were degradation of the power generation efficiency of the horizontal installation module due to the accumulation of dust and reduced energy production due to application of the same inverter for the crystal system module and amorphous module. As a result, the BIPV systems with an installation angle of 30° exhibited approximately 57% higher energy production than vertically (90°) installed systems under the same solar radiation. Moreover, horizontal (0°) BIPV systems exhibited up to 14% higher energy production than vertical BIPV systems.


2020 ◽  
Author(s):  
Yating Guo ◽  
Guozhen Wang ◽  
Hao Zhang ◽  
Hongyu Wen ◽  
Wen Li

Abstract Background: Extracellular electron transfer ( EET ) is essential in improving the power generation performance of electrochemically active bacteria ( EAB ) in microbial fuel cells ( MFCs ) . Currently, the EET mechanisms of dissimilatory metal-reducing ( DMR ) model bacteria Shewanella oneidensis and Geobacter sulfurreducens have been thoroughly studied. Klebsiella has also been proved to be an EAB capable of EET, but the EET mechanism has not been perfected. This study investigated the effects of biofilm transfer and electron mediators transfer on Klebsiella quasipneumoniae sp. 203 electricity generation performance in MFCs.Results: Herein, we covered the anode of MFC with a layer of microfiltration membrane to block the effect of the biofilm mechanism, and then explore the EET of the electron mediator mechanism of K.quasipneumoniae sp. 203 and electricity generation performance. In the absence of short-range electron transfer, we found that K.quasipneumoniae sp. 203 can still produce a certain power generation performance, and coated-MFC reached 40.26 mW / m 2 at a current density of 770.9 mA / m 2 whereas the uncoated-MFC reached 90.69 mW / m 2 at a current density of 1224.49 mA / m 2 . The difference in the electricity generation performance between coated-MFC and uncoated-MFC was probably due to the microfiltration membrane covered in anode, which inhibited the growth of EAB on the anode. Therefore, we speculated that K.quasipneumoniae sp. 203 can also perform EET through the biofilm mechanism. The protein content, the integrity of biofilm and the biofilm activity all proved that the difference in the electricity generation performance between coated-MFC and uncoated-MFC was due to the extremely little biomass of the anode biofilm. To further verify the effect of electron mediators on electricity generation performance of MFCs, 10µM 2,6-DTBBQ, 2,6-DTBHQ and DHNA were added to coated-MFC and uncoated-MFC. Combining the time-voltage curve and CV curve, we found that 2,6-DTBBQ and 2,6-DTBHQ had high electrocatalytic activity toward the redox reaction of K.quasipneumoniae sp.203-inoculated MFCs. It was also speculated that K. quasipneumoniae sp. 203 produced 2,6-DTBHQ and 2,6-DTBBQ.Conclusions: To the best of our knowledge, the three modes of EET did not exist separately. K.quasipneumoniae sp.203 will adopt the corresponding electron transfer mode or multiple ways to realize EET according to the living environment to improve electricity generation performance.


Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 769 ◽  
Author(s):  
Arnulf Jäger-Waldau

Over the last two decades, grid-connected solar photovoltaic (PV) systems have increased from a niche market to one of the leading power generation capacity additions annually. In 2018, over 100 GW of new PV power capacity was added. The annual PV capacity addition in 2018 was more than the total cumulative installed PV capacity installed until the mid of 2012. Total installed PV power capacity was in excess of 500 GW at the end of 2018. Despite a 20% decrease in annual installations, China was, again, the largest market with over 44 GW of annual installations. Decentralized PV electricity generation systems combined with local battery storage have substantially increased as well.


2015 ◽  
Vol 62 (10) ◽  
pp. 6627-6635 ◽  
Author(s):  
Huan Long ◽  
Long Wang ◽  
Zijun Zhang ◽  
Zhe Song ◽  
Jia Xu

Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3393 ◽  
Author(s):  
Yuanda Hong ◽  
Collins I. Ezeh ◽  
Wu Deng ◽  
Sung-Hugh Hong ◽  
Zhen Peng

Building retrofit measures provide a significant means of mitigating the effect of climate change on buildings by enhancing building energy performance at a beneficial cost-effectiveness. An insight into the applicable building retrofit measures within a climate zone will guide the optimisation framework to attaining sustainability in architecture and the built environment. This article presents a brief overview of recent studies on retrofit measures and its application on a variety of buildings in hot-summer–cold-winter climates, with emphasis on Shanghai. Findings show that the major retrofit measures include improvement in the building envelope, heating, ventilation and cooling (HVAC) and lighting, supported by photovoltaic (PV) systems, accordingly. Furthermore, the study identifies key elements and plausible challenges for the evaluation of building retrofit measures in this region. In this regard, financial barriers and lack of standards and regulatory support are the main challenges identified. These insights provide a systematic approach to guide building researchers, practitioners and decision-makers in the design and development of existing and new retrofit measures for the future of rapidly growing cities with a broad climate variation scope.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Yating Guo ◽  
Guozhen Wang ◽  
Hao Zhang ◽  
Hongyu Wen ◽  
Wen Li

Abstract Background Extracellular electron transfer (EET) is essential in improving the power generation performance of electrochemically active bacteria (EAB) in microbial fuel cells (MFCs). Currently, the EET mechanisms of dissimilatory metal-reducing (DMR) model bacteria Shewanella oneidensis and Geobacter sulfurreducens have been thoroughly studied. Klebsiella has also been proved to be an EAB capable of EET, but the EET mechanism has not been perfected. This study investigated the effects of biofilm transfer and electron mediators transfer on Klebsiella quasipneumoniae sp. 203 electricity generation performance in MFCs. Results Herein, we covered the anode of MFC with a layer of microfiltration membrane to block the effect of the biofilm mechanism, and then explore the EET of the electron mediator mechanism of K. quasipneumoniae sp. 203 and electricity generation performance. In the absence of short-range electron transfer, we found that K. quasipneumoniae sp. 203 can still produce a certain power generation performance, and coated-MFC reached 40.26 mW/m2 at a current density of 770.9 mA/m2, whereas the uncoated-MFC reached 90.69 mW/m2 at a current density of 1224.49 mA/m2. The difference in the electricity generation performance between coated-MFC and uncoated-MFC was probably due to the microfiltration membrane covered in anode, which inhibited the growth of EAB on the anode. Therefore, we speculated that K. quasipneumoniae sp. 203 can also perform EET through the biofilm mechanism. The protein content, the integrity of biofilm and the biofilm activity all proved that the difference in the electricity generation performance between coated-MFC and uncoated-MFC was due to the extremely little biomass of the anode biofilm. To further verify the effect of electron mediators on electricity generation performance of MFCs, 10 µM 2,6-DTBBQ, 2,6-DTBHQ and DHNA were added to coated-MFC and uncoated-MFC. Combining the time–voltage curve and CV curve, we found that 2,6-DTBBQ and 2,6-DTBHQ had high electrocatalytic activity toward the redox reaction of K. quasipneumoniae sp. 203-inoculated MFCs. It was also speculated that K. quasipneumoniae sp. 203 produced 2,6-DTBHQ and 2,6-DTBBQ. Conclusions To the best of our knowledge, the three modes of EET did not exist separately. K. quasipneumoniae sp.203 will adopt the corresponding electron transfer mode or multiple ways to realize EET according to the living environment to improve electricity generation performance.


Sign in / Sign up

Export Citation Format

Share Document