scholarly journals Experimental Investigation of Spontaneous Imbibition of Water into Hydrate Sediments Using Nuclear Magnetic Resonance Method

Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 445 ◽  
Author(s):  
Liu Yang ◽  
Chuanqing Zhang ◽  
Jianchao Cai ◽  
Hongfeng Lu

Field observations show that less than one percent of dissociation water can be produced during gas hydrate production, resulting from spontaneous water imbibition into matrix pores. What’s more, the hydrate sediments are easily dispersed in water, and it is difficult to carry out spontaneous imbibition experiments. At present, there is little research work on the imbibition capacity of hydrate sediments. In this paper, a new method of water imbibition is proposed for hydrate sediments, and nuclear magnetic resonance (NMR) technique is used to monitor water migration. The results show that as the imbibition time increases, the water is gradually imbibed into matrix pores. Water imbibition can cause dramatic changes in pore structure, such as microfracture initiation, fracture network generation and skeleton dispersion. When the imbibition time exceeds a critical value, many secondary pores (new large pores and micro-fractures) start to appear. When imbibition time exceeds the dispersion time, fracture networks are generated, eventually leading to dispersion of the sediment skeleton. The imbibition curves of hydrate sediments can be divided into two linear stages, which corresponds, respectively, to water imbibition of primary pores and secondary pores. The imbibition rate of secondary pores is significantly larger than that of primary pores, indicating that the generation of new fractures can greatly accelerate the imbibition rate. Research on the characteristics of water imbibition in hydrate sediments is important for optimizing hydrate production regime and increasing natural gas production.

Sign in / Sign up

Export Citation Format

Share Document