scholarly journals A Lab-scale Flywheel Energy Storage System: Control Strategy and Domestic Applications

Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 653 ◽  
Author(s):  
Elhoussin Elbouchikhi ◽  
Yassine Amirat ◽  
Gilles Feld ◽  
Mohamed Benbouzid ◽  
Zhibin Zhou

Flywheel is a promising energy storage system for domestic application, uninterruptible power supply, traction applications, electric vehicle charging stations, and even for smart grids. In fact, recent developments in materials, electrical machines, power electronics, magnetic bearings, and microprocessors offer the possibility to consider flywheels as a competitive option for electric energy storage, which can be of great interest for domestic applications in the near future. In this paper, a grid-tied flywheel-based energy storage system (FESS) for domestic application is investigated with special focus on the associated power electronics control and energy management. In particular, the overall PMSM-based flywheel configuration is reviewed and a controlling strategy was experimentally implemented using DS1104 controller board from dSPACE. Two case studies were considered for power peak shaving and power backup at domestic level. A lab-scale prototype was built to validate the proposal. The achieved results are presented and discussed to demonstrate the possibilities offered by such an energy storage system for domestic application.

Author(s):  
Mohamed Nadour ◽  
Ahmed Essadki ◽  
Tamou Nasser ◽  
Mohammed Fdaili

<p>This paper presents a robust coordinated control of a flywheel energy storage system (FESS) and a doubly fed induction generator (DFIG) based wind energy conversion system (WECS), used to smooth the wind induced output power fluctuations. The overall system control combines field oriented control schemes and nonlinear backstepping approach applied first, to the machine side converter (MSC) to regulate the DFIG active and reactive power in order to ensure maximum power point tracking (MPPT) operation and a unity power factor at the point of common coupling (PCC). Then, to the grid side converter (GSC) to maintain a constant DC bus voltage. Finally, to the flywheel side converter (FSC) in way that allows the storage unit to serve as a buffer that stores energy in the case of excess power and retrieves it back into the output in the case of power deficiency. A numerical simulation using Matlab/Simulink software validates the effectiveness of the proposed control strategies in terms of dynamic response, improvement of generated power quality and robustness against parametric variation.</p>


Author(s):  
Zhu Youfeng ◽  
Liu Xinhua ◽  
Wang Qiang ◽  
Wang Zibo ◽  
Zang Hongyu

Abstract Flywheel energy storage system as a new energy source is widely studied. This paper establishes a dynamic model of a single disk looseness and rub-impact coupling hitch flywheel energy storage rotor system firstly. Then dynamic differential equations of the system under the condition of nonlinear oil film force of the sliding bearing are given. Runge–Kutta method is used to solve the simplified dimensionless differential equations. The effect of variable parameters such as disk eccentricity, stator stiffness and bearing support mass on the system are analyzed. With the increase of eccentricity, the range of period-three motion is significantly reduced and the range of chaotic motion begins to appear in the bifurcation diagram. Meanwhile, stiffness of the stator and mass of the bearing support have a significant influence on the flywheel energy storage rotor system.


Sign in / Sign up

Export Citation Format

Share Document