scholarly journals Deployment of a Bidirectional MW-Level Electric-Vehicle Extreme Fast Charging Station Enabled by High-Voltage SiC and Intelligent Control

Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1840
Author(s):  
Ziwei Liang ◽  
Daniel Merced ◽  
Mojtaba Jalalpour ◽  
Hua Bai

Considering the fact that electric vehicle battery charging based on the current charging station is time-consuming, the charging technology needs to improve in order to increase charging speed, which could reduce range anxiety and benefit the user experience of electric vehicle (EV). For this reason, a 1 MW battery charging station is presented in this paper to eliminate the drawbacks of utilizing the normal 480 VAC as the system input to supply the 1 MW power, such as the low power density caused by the large volume of the 60 Hz transformer and the low efficiency caused by the high current. The proposed system utilizes the grid input of single-phase 8 kVAC and is capable of charging two electric vehicles with 500 kW each, at the same time. Therefore, this paper details how high-voltage SiC power modules are the key enabler technology, as well as the selection of a resonant-type input-series, output-parallel circuitry candidate to secure high power density and efficiency, while intelligently dealing with the transient processes, e.g., pre-charging process and power balancing among modules, and considering the impact on the grid, are both of importance.

2018 ◽  
Vol 12 (5) ◽  
pp. 579-585 ◽  
Author(s):  
Wenjin (Jason) Li ◽  
Xiaoqi Tan ◽  
Bo Sun ◽  
Danny H. K. Tsang

Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 489 ◽  
Author(s):  
Sid-Ali Amamra ◽  
Yashraj Tripathy ◽  
Anup Barai ◽  
Andrew D. Moore ◽  
James Marco

Electric vehicle (EV) powertrains consist of power electronic components as well as electric machines to manage the energy flow between different powertrain subsystems and to deliver the necessary torque and power requirements at the wheels. These power subsystems can generate undesired electrical harmonics on the direct current (DC) bus of the powertrain. This may lead to the on-board battery being subjected to DC current superposed with undesirable high- and low- frequency current oscillations, known as ripples. From real-world measurements, significant current harmonics perturbations within the range of 50 Hz to 4 kHz have been observed on the high voltage DC bus of the EV. In the limited literature, investigations into the impact of these harmonics on the degradation of battery systems have been conducted. In these studies, the battery systems were supplied by superposed current signals i.e., DC superposed by a single frequency alternating current (AC). None of these studies considered applying the entire spectrum of the ripple current measured in the real-world scenario, which is focused on in this research. The preliminary results indicate that there is no difference concerning capacity fade or impedance rise between the cells subjected to just DC current and those subjected additionally to a superposed AC ripple current.


Sign in / Sign up

Export Citation Format

Share Document