scholarly journals Exergetic Life Cycle Assessment: A Review

Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2684
Author(s):  
Martin N. Nwodo ◽  
Chimay J. Anumba

Exergy is important and relevant in many areas of study such as Life Cycle Assessment (LCA), sustainability, energy systems, and the built environment. With the growing interest in the study of LCA due to the awareness of global environmental impacts, studies have been conducted on exergetic life cycle assessment for resource accounting. The aim of this paper is to review existing studies on exergetic life cycle assessment to investigate the state-of-the-art and identify the benefits and opportunity for improvement. The methodology used entailed an in-depth literature review, which involved an analysis of journal articles collected through a search of databases such as Web of Science Core Collection, Scopus, and Google Scholar. The selected articles were reviewed and analyzed, and the findings are presented in this paper. The following key conclusions were reached: (a) exergy-based methods provide an improved measure of sustainability, (b) there is an opportunity for a more comprehensive approach to exergetic life cycle assessment that includes life cycle emission, (c) a new terminology is required to describe the combination of exergy of life cycle resource use and exergy of life cycle emissions, and (d) improved exergetic life cycle assessment has the potential to solve characterization and valuation problems in the LCA methodology.

Energy ◽  
2020 ◽  
Vol 205 ◽  
pp. 118002 ◽  
Author(s):  
Yuanjun Tang ◽  
Jun Dong ◽  
Guoneng Li ◽  
Youqu Zheng ◽  
Yong Chi ◽  
...  

2013 ◽  
Vol 51 ◽  
pp. 225-233 ◽  
Author(s):  
Sophie Huysveld ◽  
Thomas Schaubroeck ◽  
Steven De Meester ◽  
Patrick Sorgeloos ◽  
Herman Van Langenhove ◽  
...  

2021 ◽  
Vol 13 (5) ◽  
pp. 2472
Author(s):  
Teodora Stillitano ◽  
Emanuele Spada ◽  
Nathalie Iofrida ◽  
Giacomo Falcone ◽  
Anna Irene De Luca

This study aims at providing a systematic and critical review on the state of the art of life cycle applications from the circular economy point of view. In particular, the main objective is to understand how researchers adopt life cycle approaches for the measurement of the empirical circular pathways of agri-food systems along with the overall lifespan. To perform the literature review, the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol was considered to conduct a review by qualitative synthesis. Specifically, an evaluation matrix has been set up to gather and synthesize research evidence, by classifying papers according to several integrated criteria. The literature search was carried out employing scientific databases. The findings highlight that 52 case studies out of 84 (62% of the total) use stand-alone life cycle assessment (LCA) to evaluate the benefits/impacts of circular economy (CE) strategies. In contrast, only eight studies (9.5%) deal with the life cycle costing (LCC) approach combined with other analyses while no paper deals with the social life cycle assessment (S-LCA) methodology. Global warming potential, eutrophication (for marine, freshwater, and terrestrial ecosystems), human toxicity, and ecotoxicity results are the most common LCA indicators applied. Only a few articles deal with the CE assessment through specific indicators. We argue that experts in life cycle methodologies must strive to adopt some key elements to ensure that the results obtained fit perfectly with the measurements of circularity and that these can even be largely based on a common basis.


2017 ◽  
Vol 67 ◽  
pp. 88-100 ◽  
Author(s):  
Lisa Winter ◽  
Annekatrin Lehmann ◽  
Natalia Finogenova ◽  
Matthias Finkbeiner

2019 ◽  
Vol 11 (9) ◽  
pp. 2539 ◽  
Author(s):  
Maria Milousi ◽  
Manolis Souliotis ◽  
George Arampatzis ◽  
Spiros Papaefthimiou

The paper presents a holistic evaluation of the energy and environmental profile of two renewable energy technologies: Photovoltaics (thin-film and crystalline) and solar thermal collectors (flat plate and vacuum tube). The selected renewable systems exhibit size scalability (i.e., photovoltaics can vary from small to large scale applications) and can easily fit to residential applications (i.e., solar thermal systems). Various technical variations were considered for each of the studied technologies. The environmental implications were assessed through detailed life cycle assessment (LCA), implemented from raw material extraction through manufacture, use, and end of life of the selected energy systems. The methodological order followed comprises two steps: i. LCA and uncertainty analysis (conducted via SimaPro), and ii. techno-economic assessment (conducted via RETScreen). All studied technologies exhibit environmental impacts during their production phase and through their operation they manage to mitigate significant amounts of emitted greenhouse gases due to the avoided use of fossil fuels. The life cycle carbon footprint was calculated for the studied solar systems and was compared to other energy production technologies (either renewables or fossil-fuel based) and the results fall within the range defined by the global literature. The study showed that the implementation of photovoltaics and solar thermal projects in areas with high average insolation (i.e., Crete, Southern Greece) can be financially viable even in the case of low feed-in-tariffs. The results of the combined evaluation provide insight on choosing the most appropriate technologies from multiple perspectives, including financial and environmental.


Sign in / Sign up

Export Citation Format

Share Document