scholarly journals Effective Electricity Theft Detection in Power Distribution Grids Using an Adaptive Neuro Fuzzy Inference System

Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3110
Author(s):  
Konstantinos V. Blazakis ◽  
Theodoros N. Kapetanakis ◽  
George S. Stavrakakis

Electric power grids are a crucial infrastructure for the proper operation of any country and must be preserved from various threats. Detection of illegal electricity power consumption is a crucial issue for distribution system operators (DSOs). Minimizing non-technical losses is a challenging task for the smooth operation of electrical power system in order to increase electricity provider’s and nation’s revenue and to enhance the reliability of electrical power grid. The widespread popularity of smart meters enables a large volume of electricity consumption data to be collected and new artificial intelligence technologies could be applied to take advantage of these data to solve the problem of power theft more efficiently. In this study, a robust artificial intelligence algorithm adaptive neuro fuzzy inference system (ANFIS)—with many applications in many various areas—is presented in brief and applied to achieve more effective detection of electric power theft. To the best of our knowledge, there are no studies yet that involve the application of ANFIS for the detection of power theft. The proposed technique is shown that if applied properly it could achieve very high success rates in various cases of fraudulent activities originating from unauthorized energy usage.

Author(s):  
Siraj Manhal Hameed ◽  
Hayder Khaleel AL-Qaysi ◽  
Ali Sachit Kaittan ◽  
Mohammed Hasan Ali

The evaluation of electrical load estimation is requisitely of any electrical power system. This manner is needed for system obligation, economical distribution and maintenance time of electrical system. In this paper, we propose electrical load estimation method based on fuzzy inference system which gives accurate results for estimated loads in Iraq (Diyala governorateBaaquba city). And it can assist the electrical generation and distribution system that depends on important parameters (temperature, humidity and the speed of the wind). By considering the parameters temperature, humidity and the speed of the wind. These parameters are applied as inputs to the fuzzy logic control system to obtain the normalize estimated load as output by electing membership functions. It is exceptionally valuable to form a choice by taking into consideration these assessed readings that come to from the proposed FIS that displayed in this paper with precision of 0.969 from the real stack request.


2012 ◽  
Vol 1 (2) ◽  
pp. 44-59 ◽  
Author(s):  
M. S. Abdel Aziz ◽  
M. A. Moustafa Hassan ◽  
E. A. El-Zahab

This paper presents a new approach for high impedance faults analysis (detection, classification and location) in distribution networks using Adaptive Neuro Fuzzy Inference System. The proposed scheme was trained by data from simulation of a distribution system under various faults conditions and tested for different system conditions. Details of the design process and the results of performance using the proposed method are discussed. The results show the proposed technique effectiveness in detecting, classifying, and locating high impedance faults. The 3rd harmonics, magnitude and angle, for the 3 phase currents give superior results for fault detection as well as for fault location in High Impedance faults. The fundamental components magnitude and angle for the 3 phase currents give superior results for classification phase of High Impedance faults over other types of data inputs.


Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1670 ◽  
Author(s):  
Lu Minh Le ◽  
Hai-Bang Ly ◽  
Binh Thai Pham ◽  
Vuong Minh Le ◽  
Tuan Anh Pham ◽  
...  

This study aims to investigate the prediction of critical buckling load of steel columns using two hybrid Artificial Intelligence (AI) models such as Adaptive Neuro-Fuzzy Inference System optimized by Genetic Algorithm (ANFIS-GA) and Adaptive Neuro-Fuzzy Inference System optimized by Particle Swarm Optimization (ANFIS-PSO). For this purpose, a total number of 57 experimental buckling tests of novel high strength steel Y-section columns were collected from the available literature to generate the dataset for training and validating the two proposed AI models. Quality assessment criteria such as coefficient of determination (R2), Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) were used to validate and evaluate the performance of the prediction models. Results showed that both ANFIS-GA and ANFIS-PSO had a strong ability in predicting the buckling load of steel columns, but ANFIS-PSO (R2 = 0.929, RMSE = 60.522 and MAE = 44.044) was slightly better than ANFIS-GA (R2 = 0.916, RMSE = 65.371 and MAE = 48.588). The two models were also robust even with the presence of input variability, as investigated via Monte Carlo simulations. This study showed that the hybrid AI techniques could help constructing an efficient numerical tool for buckling analysis.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Chinweike Okoli ◽  
Boniface Anyaka ◽  
Chidiogo Nwokedi ◽  
Victor Anya

Distribution line is one of the most important components of the distribution system. Troubleshooting faults on these lines are often a tedious task requiring service vehicles and personnel moving from one place to another in order to locate the fault and fix the problem. The study, therefore, is on how a composite fault location technique can be applied to predict the location of faults on the distribution lines. The calculations for the estimation of the fault location are performed using one terminal voltage and current data of the distribution line. A composite method that combines the impedance-based method and the fuzzy inference system method is used in the fault location algorithm. The presented algorithm has been extensively tested using the MATLAB-Simulink model of a 33 KV 40-kilometer distribution line. The simulation result demonstrates good accuracy and robustness of the algorithm.


Sign in / Sign up

Export Citation Format

Share Document