scholarly journals A Novel Probabilistic Power Flow Algorithm Based on Principal Component Analysis and High-Dimensional Model Representation Techniques

Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3520 ◽  
Author(s):  
Hang Li ◽  
Zhe Zhang ◽  
Xianggen Yin

Because the penetration level of renewable energy sources has increased rapidly in recent years, uncertainty in power system operation is gradually increasing. As an efficient tool for power system analysis under uncertainty, probabilistic power flow (PPF) is becoming increasingly important. The point-estimate method (PEM) is a well-known PPF algorithm. However, two significant defects limit the practical use of this method. One is that the PEM struggles to estimate high-order moments accurately; this defect makes it difficult for the PEM to describe the distribution of non-Gaussian output random variables (ORVs). The other is that the calculation burden is strongly related to the scale of input random variables (IRVs), which makes the PEM difficult to use in large-scale power systems. A novel approach based on principal component analysis (PCA) and high-dimensional model representation (HDMR) is proposed here to overcome the defects of the traditional PEM. PCA is applied to decrease the dimension scale of IRVs and eliminate correlations. HDMR is applied to estimate the moments of ORVs. Because HDMR considers the cooperative effects of IRVs, it has a significantly smaller estimation error for high-order moments in particular. Case studies show that the proposed method can achieve a better performance in terms of accuracy and efficiency than traditional PEM.

2013 ◽  
Vol 136 (1) ◽  
Author(s):  
Kambiz Haji Hajikolaei ◽  
G. Gary Wang

In engineering design, spending excessive amount of time on physical experiments or expensive simulations makes the design costly and lengthy. This issue exacerbates when the design problem has a large number of inputs, or of high dimension. High dimensional model representation (HDMR) is one powerful method in approximating high dimensional, expensive, black-box (HEB) problems. One existing HDMR implementation, random sampling HDMR (RS-HDMR), can build an HDMR model from random sample points with a linear combination of basis functions. The most critical issue in RS-HDMR is that calculating the coefficients for the basis functions includes integrals that are approximated by Monte Carlo summations, which are error prone with limited samples and especially with nonuniform sampling. In this paper, a new approach based on principal component analysis (PCA), called PCA-HDMR, is proposed for finding the coefficients that provide the best linear combination of the bases with minimum error and without using any integral. Several benchmark problems of different dimensionalities and one engineering problem are modeled using the method and the results are compared with RS-HDMR results. In all problems with both uniform and nonuniform sampling, PCA-HDMR built more accurate models than RS-HDMR for a given set of sample points.


2020 ◽  
Vol 152 (23) ◽  
pp. 234103
Author(s):  
Bastien Casier ◽  
Stéphane Carniato ◽  
Tsveta Miteva ◽  
Nathalie Capron ◽  
Nicolas Sisourat

2020 ◽  
Vol 12 (3) ◽  
pp. 378
Author(s):  
Dong Li ◽  
Haining Ma ◽  
Hongqing Liu ◽  
Zhanye Chen ◽  
Jia Su ◽  
...  

Refocusing ground manoeuvring targets with complex motions in synthetic aperture radar (SAR) remains a challenging objective because of the large range of cell migration (RCM) and time-varying Doppler frequency modulation (DFM). By exploiting the geometric information of RCM and two-dimensional (2-D) coherently integrated gain, a fast ground manoeuvring target refocusing method using principal component analysis (PCA) and high-order motion parameter estimation is proposed. First, an efficient phase difference (PD) method and PCA are utilized to correct the RCM, and then, the energy of the ground manoeuvring target is concentrated into the same range bin. Second, by utilizing the coherently integrated cubic phase function (CICPF) that was developed in our previous work, the motion parameters are obtained accurately, and the manoeuvring target is thus well refocused into a sharp peak point based on the estimated motion parameters. The proposed method is of low computational complexity because it avoids time-consuming search and interpolation operations and demonstrates an improved anti-noise performance due to fully exploiting the 2-D coherent accumulation characteristics for estimating motion parameters and enhanced refocused imaging results for manoeuvring targets due to adopting the high-order motion model. Finally, experiments are conducted using simulated and real SAR data to show the performance of the proposed method.


2013 ◽  
Vol 303-306 ◽  
pp. 1101-1104 ◽  
Author(s):  
Yong De Hu ◽  
Jing Chang Pan ◽  
Xin Tan

Kernel entropy component analysis (KECA) reveals the original data’s structure by kernel matrix. This structure is related to the Renyi entropy of the data. KECA maintains the invariance of the original data’s structure by keeping the data’s Renyi entropy unchanged. This paper described the original data by several components on the purpose of dimension reduction. Then the KECA was applied in celestial spectra reduction and was compared with Principal Component Analysis (PCA) and Kernel Principal Component Analysis (KPCA) by experiments. Experimental results show that the KECA is a good method in high-dimensional data reduction.


2021 ◽  
pp. 1321-1333
Author(s):  
Ghadeer JM Mahdi ◽  
Bayda A. Kalaf ◽  
Mundher A. Khaleel

In this paper, a new hybridization of supervised principal component analysis (SPCA) and stochastic gradient descent techniques is proposed, and called as SGD-SPCA, for real large datasets that have a small number of samples in high dimensional space. SGD-SPCA is proposed to become an important tool that can be used to diagnose and treat cancer accurately. When we have large datasets that require many parameters, SGD-SPCA is an excellent method, and it can easily update the parameters when a new observation shows up. Two cancer datasets are used, the first is for Leukemia and the second is for small round blue cell tumors. Also, simulation datasets are used to compare principal component analysis (PCA), SPCA, and SGD-SPCA. The results show that SGD-SPCA is more efficient than other existing methods.


Sign in / Sign up

Export Citation Format

Share Document