scholarly journals Adaptive Overhead Transmission Lines Auto-Reclosing Based on Hilbert–Huang Transform

Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5416 ◽  
Author(s):  
Arman Ghaderi Baayeh ◽  
Navid Bayati

This paper presents a reliable and fast index to detect the instant of arc extinction for adaptive single-pole automatic reclosing (ASPAR). The proposed method is a simple technique for ASPAR on shunt compensated transmission lines using the Hilbert–Huang Transform (HHT). The HHT method is a combination of the empirical mode decomposition (EMD) and the Hilbert transform (HT). The first intrinsic mode function (IMF1) decomposed by EMD, which contains high frequencies of the faulty phase voltage, was used to calculate the proposed index. HT calculates the first IMF spectrum in the time-frequency domain. The presented index is the sum of all frequency contents below 55 Hz, which remains very low until the fault clearance. The proposed method uses a global threshold level and therefore no adjustment is needed for different transmission systems. This method is effective for various system configurations including different fault locations, line loading, and various shunt reactor configurations, designs, compensation rates, and placement. The performance of the method was verified using 324 test cases simulated in electromagnetic transient program (EMTP) related to a 345 kV transmission line. For all the test cases, the algorithm successfully operated with an average reclosing time delay of 32 ms.

2011 ◽  
Vol 1 (32) ◽  
pp. 25
Author(s):  
Shigeru Kato ◽  
Magnus Larson ◽  
Takumi Okabe ◽  
Shin-ichi Aoki

Turbidity data obtained by field observations off the Tenryu River mouth were analyzed using the Hilbert-Huang Transform (HHT) in order to investigate the characteristic variations in time and in the frequency domain. The Empirical Mode Decomposition (EMD) decomposed the original data into only eight intrinsic mode functions (IMFs) and a residue in the first step of the HHT. In the second step, the Hilbert transform was applied to the IMFs to calculate the Hilbert spectrum, which is the time-frequency distribution of the instantaneous frequency and energy. The changes in instantaneous frequencies showed correspondence to high turbidity events in the Hilbert spectrum. The investigation of instantaneous frequency variations can be used to understand transitions in the state of the turbidity. The comparison between the Fourier spectrum and the Hilbert spectrum integrated in time showed that the Hilbert spectrum makes it possible to detect and quantify the cycle of locally repeated events.


2010 ◽  
Vol 02 (03) ◽  
pp. 337-358 ◽  
Author(s):  
ROLAND PABEL ◽  
ROBIN KOCH ◽  
GABRIELA JAGER ◽  
ANGELA KUNOTH

The Hilbert–Huang-Transform (HHT) has proven to be an appropriate multiscale analysis technique specifically for nonlinear and nonstationary time series on non-equidistant grids. It is empirically adapted to the data: first, an additive decomposition of the data (empirical mode decomposition, EMD) into certain multiscale components is computed, denoted as intrinsic mode functions. Second, to each of these components, the Hilbert transform is applied. The resulting Hilbert spectrum of the modes provides a localized time-frequency spectrum and instantaneous (time-dependent) frequencies. For the first step, the empirical decomposition of the data, a different method based on local means has been developed by Chen et al. (2006). In this paper, we extend their method to multivariate data sets in arbitrary space dimensions. We place special emphasis on deriving a method which is numerically fast also in higher dimensions. Our method works in a coarse-to-fine fashion and is based on adaptive (tensor-product) spline-wavelets. We provide some numerical comparisons to a method based on linear finite elements and one based on thin-plate-splines to demonstrate the performance of our method, both with respect to the quality of the approximation as well as the numerical efficiency. Second, for a generalization of the Hilbert transform to the multivariate case, we consider the Riesz transformation and an embedding into Clifford-algebra valued functions, from which instantaneous amplitudes, phases and orientations can be derived. We conclude with some numerical examples.


Geophysics ◽  
2007 ◽  
Vol 72 (2) ◽  
pp. H29-H37 ◽  
Author(s):  
Bradley Matthew Battista ◽  
Camelia Knapp ◽  
Tom McGee ◽  
Vaughn Goebel

Advancements in signal processing may allow for improved imaging and analysis of complex geologic targets found in seismic reflection data. A recent contribution to signal processing is the empirical mode decomposition (EMD) which combines with the Hilbert transform as the Hilbert-Huang transform (HHT). The EMD empirically reduces a time series to several subsignals, each of which is input to the same time-frequency environment via the Hilbert transform. The HHT allows for signals describing stochastic or astochastic processes to be analyzed using instantaneous attributes in the time-frequency domain. The HHT is applied herein to seismic reflection data to: (1) assess the ability of the EMD and HHT to quantify meaningful geologic information in the time and time-frequency domains, and (2) use instantaneous attributes to develop superior filters for improving the signal-to-noise ratio. The objective of this work is to determine whether the HHT allows for empirically-derived characteristics to be used in filter design and application, resulting in better filter performance and enhanced signal-to-noise ratio. Two data sets are used to show successful application of the EMD and HHT to seismic reflection data processing. Nonlinear cable strum is removed from one data set while the other is used to show how the HHT compares to and outperforms Fourier-based processing under certain conditions.


2011 ◽  
Vol 321 ◽  
pp. 140-145
Author(s):  
Shu Feng Ai

A novel application of Hilbert-Huang transform method to fault diagnosis of gear crack is presented. The methodology developed in this paper decomposes the original times series data in intrinsic oscillation modes, using the empirical mode decomposition. Then the Hilbert transform is applied to each intrinsic mode function. Therefore, the time-frequency distribution is obtained.


Author(s):  
Mykola Sysyn ◽  
Olga Nabochenko ◽  
Franziska Kluge ◽  
Vitalii Kovalchuk ◽  
Andriy Pentsak

Track-side inertial measurements on common crossings are the object of the present study. The paper deals with the problem of measurement's interpretation for the estimation of the crossing structural health. The problem is manifested by the weak relation of measured acceleration components and impact lateral distribution to the lifecycle of common crossing rolling surface. The popular signal processing and machine learning methods are explored to solve the problem. The Hilbert-Huang Transform (HHT) method is used to extract the time-frequency features of acceleration components. The method is based on Ensemble Empirical Mode Decomposition (EEMD) that is advantageous to the conventional spectral analysis methods with higher frequency resolution and managing nonstationary nonlinear signals. Linear regression and Gaussian Process Regression are used to fuse the extracted features in one structural health (SH) indicator and study its relation to the crossing lifetime. The results have shown the significant relation of the derived with GPR indicator to the lifetime.


2019 ◽  
Vol 8 (2) ◽  
pp. 373-380 ◽  
Author(s):  
Kamil Szydło ◽  
Piotr Wolszczak ◽  
Rafał Longwic ◽  
Grzegorz Litak ◽  
Mieczysław Dziubiński ◽  
...  

Abstract Purpose The comfort of lift passengers has a significant effect on their general health condition as well as stress levels during travel. This study reports the results of vibration measurements taken during travel in a passenger lift. Methods Vibration signals were analyzed by the empirical mode decomposition method and the Hilbert transform. Results Selected modes from the Hilbert spectral analysis were compared with the resonance frequencies of human body organs (range 20–90 Hz) as well as with the resonance frequencies of lift components. Conclusion The use of Hilbert spectral analysis enables the isolation of individual signal components and the determination of the dominant frequency in the signal. This, in turn, allows for the isolation of raw vibration frequencies from the signal that are particularly significant for passenger comfort assessment (resonance frequencies of human body organs) and analysis of their occurrence.


2011 ◽  
Vol 11 (5) ◽  
pp. 1559-1569 ◽  
Author(s):  
Z. Feng

Abstract. The Shiaolin landslide occurred on 9 August 2009 after Typhoon Morakot struck Taiwan, claiming over 400 lives. The seismic signals produced by the landslide were recorded by broadband seismic stations in Taiwan. The time-frequency spectra for these signals were obtained by the Hilbert-Huang transform (HHT) and were analyzed to obtain the seismic characteristics of the landslide. Empirical mode decomposition (EMD) was applied to differentiate weak surface-wave signals from noise and to estimate the surface-wave velocities in the region. The surface-wave velocities were estimated using the fifth intrinsic mode function (IMF 5) obtained from the EMD. The spectra of the earthquake data were compared. The main frequency content of the seismic waves caused by the Shiaolin landslide were in the range of 0.5 to 1.5 Hz. This frequency range is smaller than the frequency ranges of other earthquakes. The spectral analysis of surface waves (SASW) method is suggested for characterizing the shear-wave velocities of the strata in the region.


2011 ◽  
Vol 354-355 ◽  
pp. 1406-1411
Author(s):  
Wen Hua Han ◽  
Hai Xia Ren ◽  
Xu Chen ◽  
Xiao Juan Tao

Hilbert-Huang transform (HHT) is a new time-frequency-domain analysis method, which is suitable for non-stationary and nonlinear signals. In this paper, endpoint continuation and ensemble empirical mode decomposition (EEMD) decomposition method are introduced to improve the HHT, which solve the endpoint winger and modal aliasing problem. The improved HHT (IHHT) is used for analyzing the harmonic signal and detecting the fault signal of power system. Simulation results show that IHHT is feasible and effective for harmonic analysis and fault detection.


Author(s):  
Norden E. Huang ◽  
Kun Hu ◽  
Albert C. C. Yang ◽  
Hsing-Chih Chang ◽  
Deng Jia ◽  
...  

The Holo-Hilbert spectral analysis (HHSA) method is introduced to cure the deficiencies of traditional spectral analysis and to give a full informational representation of nonlinear and non-stationary data. It uses a nested empirical mode decomposition and Hilbert–Huang transform (HHT) approach to identify intrinsic amplitude and frequency modulations often present in nonlinear systems. Comparisons are first made with traditional spectrum analysis, which usually achieved its results through convolutional integral transforms based on additive expansions of an a priori determined basis, mostly under linear and stationary assumptions. Thus, for non-stationary processes, the best one could do historically was to use the time–frequency representations, in which the amplitude (or energy density) variation is still represented in terms of time. For nonlinear processes, the data can have both amplitude and frequency modulations (intra-mode and inter-mode) generated by two different mechanisms: linear additive or nonlinear multiplicative processes. As all existing spectral analysis methods are based on additive expansions, either a priori or adaptive, none of them could possibly represent the multiplicative processes. While the earlier adaptive HHT spectral analysis approach could accommodate the intra-wave nonlinearity quite remarkably, it remained that any inter-wave nonlinear multiplicative mechanisms that include cross-scale coupling and phase-lock modulations were left untreated. To resolve the multiplicative processes issue, additional dimensions in the spectrum result are needed to account for the variations in both the amplitude and frequency modulations simultaneously. HHSA accommodates all the processes: additive and multiplicative, intra-mode and inter-mode, stationary and non-stationary, linear and nonlinear interactions. The Holo prefix in HHSA denotes a multiple dimensional representation with both additive and multiplicative capabilities.


2016 ◽  
Vol 44 ◽  
pp. 141-150
Author(s):  
Kazi Mahmudul Hassan ◽  
Md. Ekramul Hamid ◽  
Takayoshi Nakai

This study proposed an enhanced time-frequency representation of audio signal using EMD-2TEMD based approach. To analyze non-stationary signal like audio, timefrequency representation is an important aspect. In case of representing or analyzing such kind of signal in time-frequency-energy distribution, hilbert spectrum is a recent approach and popular way which has several advantages over other methods like STFT, WT etc. Hilbert-Huang Transform (HHT) is a prominent method consists of Empirical Mode Decomposition (EMD) and Hilbert Spectral Analysis (HSA). An enhanced method called Turning Tangent empirical mode decomposition (2T-EMD) has recently developed to overcome some limitations of classical EMD like cubic spline problems, sifting stopping condition etc. 2T-EMD based hilbert spectrum of audio signal encountered some issues due to the generation of too many IMFs in the process where EMD produces less. To mitigate those problems, a mutual implementation of 2T-EMD & classical EMD is proposed in this paper which enhances the representation of hilbert spectrum along with significant improvements in source separation result using Independent Subspace Analysis (ISA) based clustering in case of audio signals. This refinement of hilbert spectrum not only contributes to the future work of source separation problem but also many other applications in audio signal processing.


Sign in / Sign up

Export Citation Format

Share Document