scholarly journals Development of a Coupled TRNSYS-MATLAB Simulation Framework for Model Predictive Control of Integrated Electrical and Thermal Residential Renewable Energy System

Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5761
Author(s):  
Muthalagappan Narayanan ◽  
Aline Ferreira de Lima ◽  
André Felipe Oliveira de Azevedo Dantas ◽  
Walter Commerell

An integrated electrical and thermal residential renewable energy system consisting of solar thermal collectors, gas boiler, fuel cell combined heat and power, a photovoltaic system with battery, inverter, and thermal storage for a single-family house of Sonnenhaus standard is investigated with a model predictive controller (MPC). The main focus of this article is to define a multi-objective mathematical function, develop a coupled simulation framework for the nonlinear time-varying deterministic discrete-time problem of the energy system using TRNSYS and MATLAB. With the developed methodology, a sensitivity analysis of maximum optimization time, swarm (or population or mesh) size of a typical spring day and a typical summer day assuming a 100% accurate weather and load forecast with three different algorithms: particle swarm optimization (PSO), genetic algorithm (GA) and global pattern search (GPS) are analyzed. Finally, the obtained results are compared with a status quo controller. Results show that the PSO algorithm optimizer performs the best in this MPC for such a complex and time-consuming MPC model in both the spring day and the summer day. The obtained results show that the PSO with swarm size 50 in the selected typical spring day and the PSO with swarm size 40 in the selected summer day reduces the objective function’s fitness value from 413 to −177 within 6 h optimization time and from 1396 to 1090 in 4 h optimization time respectively.


2021 ◽  
Vol 351 ◽  
pp. 01019
Author(s):  
Bogdan Landowski ◽  
Kamil Chisiński ◽  
Łukasz Muślewski

The study presents selected elements of a design method for renewable energy system based on photovoltaic technology. The main problems involved in the so called 500kW photovoltaic farm are discussed. Examples of a few general concepts of photovoltaic farm systems are presented. Exemplary criteria for the concept selection are proposed. The main components to be used in a photovoltaic farm are presented, and some stages of the photovoltaic farm design are characterized.



2020 ◽  
Vol 10 (12) ◽  
pp. 4061 ◽  
Author(s):  
Naoto Takatsu ◽  
Hooman Farzaneh

After the Great East Japan Earthquake, energy security and vulnerability have become critical issues facing the Japanese energy system. The integration of renewable energy sources to meet specific regional energy demand is a promising scenario to overcome these challenges. To this aim, this paper proposes a novel hydrogen-based hybrid renewable energy system (HRES), in which hydrogen fuel can be produced using both the methods of solar electrolysis and supercritical water gasification (SCWG) of biomass feedstock. The produced hydrogen is considered to function as an energy storage medium by storing renewable energy until the fuel cell converts it to electricity. The proposed HRES is used to meet the electricity demand load requirements for a typical household in a selected residential area located in Shinchi-machi in Fukuoka prefecture, Japan. The techno-economic assessment of deploying the proposed systems was conducted, using an integrated simulation-optimization modeling framework, considering two scenarios: (1) minimization of the total cost of the system in an off-grid mode and (2) maximization of the total profit obtained from using renewable electricity and selling surplus solar electricity to the grid, considering the feed-in-tariff (FiT) scheme in a grid-tied mode. As indicated by the model results, the proposed HRES can generate about 47.3 MWh of electricity in all scenarios, which is needed to meet the external load requirement in the selected study area. The levelized cost of energy (LCOE) of the system in scenarios 1 and 2 was estimated at 55.92 JPY/kWh and 56.47 JPY/kWh, respectively.



Sign in / Sign up

Export Citation Format

Share Document