scholarly journals Optimal Capacity Sizing for the Integration of a Battery and Photovoltaic Microgrid to Supply Auxiliary Services in Substations under a Contingency

Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 6037
Author(s):  
Alejandra Tabares ◽  
Norberto Martinez ◽  
Lucas Ginez ◽  
José F. Resende ◽  
Nierbeth Brito ◽  
...  

Auxiliary services are vital for the operation of a substation. If a contingency affects the distribution feeder that provides energy for the auxiliary services, it could lead to the unavailability of the substation’s service. Therefore, backup systems such as diesel generators are used. Another alternative is the adoption of a microgrid with batteries and photovoltaic generation to supply substation auxiliary services during a contingency. Nevertheless, high battery costs and the intermittence of photovoltaic generation requires a careful analysis so the microgrid capacity is defined in a compromise between the investment and the unavailability reduction of auxiliary services. This paper proposes a method for the capacity sizing of a microgrid with batteries, photovoltaic generation, and bidirectional inverters to supply auxiliary services in substations under a contingency. A set of alternatives is assessed through exhaustive search and Monte Carlo simulations to cater for uncertainties of contingencies and variation of solar irradiation. An unavailability index is proposed to measure the contribution of the integrated hybrid microgrid to reduce the time that the substation is not in operation. Simulations carried out showed that the proposed method identifies the microgrid capacity with the lowest investment that satisfies a goal for the unavailability of the substation service.

Electronics ◽  
2021 ◽  
Vol 10 (22) ◽  
pp. 2826
Author(s):  
Julian Garcia-Guarin ◽  
David Alvarez ◽  
Sergio Rivera

The uncertainty of solar generation and the bull market are unavoidable in energy dispatch. The purpose of this research is to validate an uncertainty cost function of residential photovoltaic energy in a real microgrid by varying the number of auctions in intraday markets. Therefore, the following procedure is proposed. First, the variability of photovoltaic generation is quantified through Monte Carlo simulations. Second, a statistical function calculates the variability costs of photovoltaic generation. Third, the uncertainty costs are estimated by varying intraday auction markets. Other complementary services are added to the network, such as battery exchange stations for electric vehicles, demand response loads, market power restrictions, and energy storage systems, which are estimated as total costs in an index ranking. The total costs are optimized in a benchmark microgrid and take complimentary services as a black box. Only the uncertainty costs of residential solar generators are discriminated. The main findings were that (1) the uncertainty costs have an error of less than 0.0168% compared to the Monte Carlo simulations and that (2) the uncertainty costs of solar generation are reduced with a decreasing trend to a more significant number of auction markets in intraday markets.


Author(s):  
Matthew T. Johnson ◽  
Ian M. Anderson ◽  
Jim Bentley ◽  
C. Barry Carter

Energy-dispersive X-ray spectrometry (EDS) performed at low (≤ 5 kV) accelerating voltages in the SEM has the potential for providing quantitative microanalytical information with a spatial resolution of ∼100 nm. In the present work, EDS analyses were performed on magnesium ferrite spinel [(MgxFe1−x)Fe2O4] dendrites embedded in a MgO matrix, as shown in Fig. 1. spatial resolution of X-ray microanalysis at conventional accelerating voltages is insufficient for the quantitative analysis of these dendrites, which have widths of the order of a few hundred nanometers, without deconvolution of contributions from the MgO matrix. However, Monte Carlo simulations indicate that the interaction volume for MgFe2O4 is ∼150 nm at 3 kV accelerating voltage and therefore sufficient to analyze the dendrites without matrix contributions.Single-crystal {001}-oriented MgO was reacted with hematite (Fe2O3) powder for 6 h at 1450°C in air and furnace cooled. The specimen was then cleaved to expose a clean cross-section suitable for microanalysis.


1979 ◽  
Vol 40 (C7) ◽  
pp. C7-63-C7-64
Author(s):  
A. J. Davies ◽  
J. Dutton ◽  
C. J. Evans ◽  
A. Goodings ◽  
P.K. Stewart

Sign in / Sign up

Export Citation Format

Share Document