scholarly journals Home Energy Management for Community Microgrids Using Optimal Power Sharing Algorithm

Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1060
Author(s):  
Md Mamun Ur Rashid ◽  
Majed A. Alotaibi ◽  
Abdul Hasib Chowdhury ◽  
Muaz Rahman ◽  
Md. Shafiul Alam ◽  
...  

From a residential point of view, home energy management (HEM) is an essential requirement in order to diminish peak demand and utility tariffs. The integration of renewable energy sources (RESs) together with battery energy storage systems (BESSs) and central battery storage system (CBSS) may promote energy and cost minimization. However, proper home appliance scheduling along with energy storage options is essential to significantly decrease the energy consumption profile and overall expenditure in real-time operation. This paper proposes a cost-effective HEM scheme in the microgrid framework to promote curtailing of energy usage and relevant utility tariff considering both energy storage and renewable sources integration. Usually, the household appliances have different runtime preferences and duration of operation based on user demand. This work considers a simulator designed in the C++ platform to address the domestic customer’s HEM issue based on usages priorities. The positive aspects of merging RESs, BESSs, and CBSSs with the proposed optimal power sharing algorithm (OPSA) are evaluated by considering three distinct case scenarios. Comprehensive analysis of each scenario considering the real-time scheduling of home appliances is conducted to substantiate the efficacy of the outlined energy and cost mitigation schemes. The results obtained demonstrate the effectiveness of the proposed algorithm to enable energy and cost savings up to 37.5% and 45% in comparison to the prevailing methodology.

Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4288 ◽  
Author(s):  
Md Mamun Ur Rashid ◽  
Fabrizio Granelli ◽  
Md. Alamgir Hossain ◽  
Md. Shafiul Alam ◽  
Fahad Saleh Al-Ismail ◽  
...  

The steady increase in energy demand for residential consumers requires an efficient energy management scheme. Utility organizations encourage household applicants to engage in residential energy management (REM) system. The utility’s primary goal is to reduce system peak load demand while consumer intends to reduce electricity bills. The benefits of REM can be enhanced with renewable energy sources (RESs), backup battery storage system (BBSS), and optimal power-sharing strategies. This paper aims to reduce energy usages and monetary cost for smart grid communities with an efficient home energy management scheme (HEMS). Normally, the residential consumer deals with numerous smart home appliances that have various operating time priorities depending on consumer preferences. In this paper, a cost-efficient power-sharing technique is developed which works based on priorities of appliances’ operating time. The home appliances are sorted on priority basis and the BBSS are charged and discharged based on the energy availability within the smart grid communities and real time energy pricing. The benefits of optimal power-sharing techniques with the RESs and BBSS are analyzed by taking three different scenarios which are simulated by C++ software package. Extensive case studies are carried out to validate the effectiveness of the proposed energy management scheme. It is demonstrated that the proposed method can save energy and reduce electricity cost up to 35% and 45% compared to the existing methods.


Energies ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2712 ◽  
Author(s):  
Mahmoud Elkazaz ◽  
Mark Sumner ◽  
David Thomas

A new energy management system (EMS) is presented for small scale microgrids (MGs). The proposed EMS focuses on minimizing the daily cost of the energy drawn by the MG from the main electrical grid and increasing the self-consumption of local renewable energy resources (RES). This is achieved by determining the appropriate reference value for the power drawn from the main grid and forcing the MG to accurately follow this value by controlling a battery energy storage system. A mixed integer linear programming algorithm determines this reference value considering a time-of-use tariff and short-term forecasting of generation and consumption. A real-time predictive controller is used to control the battery energy storage system to follow this reference value. The results obtained show the capability of the proposed EMS to lower the daily operating costs for the MG customers. Experimental studies on a laboratory-based MG have been implemented to demonstrate that the proposed EMS can be implemented in a realistic environment.


Sign in / Sign up

Export Citation Format

Share Document