scholarly journals A Virtual Power Plant Solution for Aggregating Photovoltaic Systems and Other Distributed Energy Resources for Northern European Primary Frequency Reserves

Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1242
Author(s):  
Rakshith Subramanya ◽  
Matti Yli-Ojanperä ◽  
Seppo Sierla ◽  
Taneli Hölttä ◽  
Jori Valtakari ◽  
...  

Primary frequency reserves in Northern Europe have traditionally been provided with hydro plants and fossil fuel-burning spinning reserves. Recently, smart distributed energy resources have been equipped with functionality needed to participate on frequency reserves. Key categories of such resources include photovoltaic systems, batteries, and smart loads. Most of these resources are small and cannot provide the minimum controllable power required to participate on frequency reserves. Thus, virtual power plants have been used to aggregate the resources and trade them on the frequency reserves markets. The information technology aspects of virtual power plants are proprietary and many of the details have not been made public. The first contribution of this article is to propose a generic data model and application programming interface for a virtual power plant with the above-mentioned capabilities. The second contribution is to use the application programming interface to cope with the unpredictability of the frequency reserve capacity that the photovoltaic systems and other distributed energy resources are able to provide to the frequency reserves markets in the upcoming bidding period. The contributions are demonstrated with an operational virtual power plant installation at a Northern European shopping center, aggregating photovoltaic Primary Frequency Reserves resources.

2021 ◽  
Vol 11 (9) ◽  
pp. 3814
Author(s):  
Poushali Pal ◽  
Parvathy Ayalur Krishnamoorthy ◽  
Devabalaji Kaliaperumal Rukmani ◽  
S. Joseph Antony ◽  
Simon Ocheme ◽  
...  

Renewable energy sources prevail as a clean energy source and their penetration in the power sector is increasing day by day due to the growing concern for climate action. However, the intermittent nature of the renewable energy based-power generation questions the grid security, especially when the utilized source is solar radiation or wind flow. The intermittency of the renewable generation can be met by the integration of distributed energy resources. The virtual power plant (VPP) is a new concept which aggregates the capacities of various distributed energy resources, handles controllable and uncontrollable loads, integrates storage devices and empowers participation as an individual power plant in the electricity market. The VPP as an energy management system (EMS) should optimally dispatch the power to its consumers. This research work is proposed to analyze the optimal scheduling of generation in VPP for the day-ahead market framework using the beetle antenna search (BAS) algorithm under various scenarios. A case study is considered for this analysis in which the constituting energy resources include a photovoltaic solar panel (PV), micro-turbine (MT), wind turbine (WT), fuel cell (FC), battery energy storage system (BESS) and controllable loads. The real-time hourly load curves are considered in this work. Three different scenarios are considered for the optimal dispatch of generation in the VPP to analyze the performance of the proposed technique. The uncertainties of the solar irradiation and the wind speed are modeled using the beta distribution method and Weibull distribution method, respectively. The performance of the proposed method is compared with other evolutionary algorithms such as particle swarm optimization (PSO) and the genetic algorithm (GA). Among these above-mentioned algorithms, the proposed BAS algorithm shows the best scheduling with the minimum operating cost of generation.


2016 ◽  
Vol 98 (4) ◽  
pp. 347-354 ◽  
Author(s):  
Torsten Sowa ◽  
Maria Vasconcelos ◽  
Armin Schnettler ◽  
Michael Metzger ◽  
Alexander Hammer ◽  
...  

Author(s):  
D Pudjianto ◽  
C Ramsay ◽  
G Strbac

This article presents the concepts of the microgrid and the virtual power plant (VPP) as vehicles to facilitate cost-efficient integration of distributed energy resources (DERs) into the existing power system. These concepts were designed to enhance the system value and the controllability of DER and to provide frameworks for the development of interfaces among energy and ancillary service resources, system operators, and energy market participants. Through aggregation, DER access to energy markets is facilitated, and DER-based system support and ancillary services can be provided. By enabling this additional functionality, it is envisaged that system performance measured in the form of energy efficiency, power quality, security, and economic operation can be improved. In this paper, the technical and commercial functionality facilitated through the microgrid and VPP concepts is described. The paper concludes with case studies demonstrating the application of the concepts on a test system.


2021 ◽  
Vol 20 ◽  
pp. 75-91
Author(s):  
Qing Yang ◽  
Hao Wang ◽  
Taotao Wang ◽  
Shengli Zhang ◽  
Xiaoxiao Wu ◽  
...  

The advent of distributed energy resources (DERs), such as distributed renewables, energy storage, electric vehicles, and controllable loads, brings a significantly disruptive and transformational impact on the centralized power system. It is widely accepted that a paradigm shift to a decentralized power system with bidirectional power flow is necessary to the integration of DERs. The virtual power plant (VPP) emerges as a promising paradigm for managing DERs to participate in the power system. In this paper, we develop a blockchain-based VPP energy management platform to facilitate a rich set of transactive energy activities among residential users with renewables, energy storage, and flexible loads in a VPP. Specifically, users can interact with each other to trade energy for mutual benefits and provide network services, such as feed-in energy, reserve, and demand response, through the VPP. To respect the users’ independence and preserve their privacy, we design a decentralized optimization algorithm to optimize the users’ energy scheduling, energy trading, and network services. Then we develop a prototype blockchain network for VPP energy management and implement the proposed algorithm on the blockchain network. By experiments using real-world data trace, we validated the feasibility and e_ectiveness of our algorithm and the blockchain system. The simulation results demonstrate that our blockchain-based VPP energy management platform reduces the users’ cost by up to 38.6% and reduces the overall system cost by 11.2%.


2018 ◽  
Vol 56 (1) ◽  
pp. 81
Author(s):  
Duc Huu Nguyen

Small distributed energy sources could be aggregated to form a virtual power plant (VPP) in order to overall improve technical and market issues. VPPs should be composed of several distributed batteries (DB) to solve the problem of intermittency due to wind and solar. This paper presents an approach to balance state of charge batteries. It is therefore to improve the lifetime of batteries in VPPs. According to the proposed method, the real-time SOC of DB will be tracking on the balancing SOC determined in VPP. During operation, the difference of SOC among DBs will be shrunk and finally the share of exchange power among DB is equal. Moreover, the duration time to achieve the balancing SOC can be determined by adjusting the exponent parameter of SOC in the presented function.


Sign in / Sign up

Export Citation Format

Share Document