scholarly journals CPC-Based Minimizing of Balancing Compensators in Four-Wire Nonsinusoidal Asymmetrical Systems

Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1815
Author(s):  
Zbigniew Sołjan ◽  
Grzegorz Hołdyński ◽  
Maciej Zajkowski

The article presents the possibility of using the currents’ physical components (CPC) theory to generate the reference current of the active power filter (APF). The solution proposed by the authors is based on the cooperation of minimizing balancing compensators (MBC), which, due to their use in 4-wire systems, have been divided into two structures. The first compensator, which purpose is to minimize and balance the reactive current and the unbalanced current of the zero sequence, is built in the star system (STAR-MBC). The purpose of the second compensator, which operation occurs in the delta system (DELTA-MBC), is to minimize and balance the other two components, i.e., the unbalanced current of the negative sequence and the unbalanced current of the positive sequence. The two structures cooperating with each other significantly reduce the currents associated with the reactive elements, i.e., reactive current, and the unbalanced current. As mentioned, these currents are reduced but not compensated to zero or to the reference value. In order for the compensation and balancing to bring the preferable effect, an APF system should be included, which will cooperate with MBC compensators. This solution is presented in this publication. The control of the active part of the hybrid active power filter (HAPF), which was presented in the paper, consists of the reflection of the waveform of the nonsinusoidal active current. In this approach, no current shift in relation to voltage is obtained, but the waveforms of these quantities remain distorted. The reactive current is compensated and the unbalanced currents are balanced. The second definition of generating a reference current can also be used. Through this approach, the active current with a sinusoidal waveform is achieved. The second approach allows for an additional reduction of the three-phase RMS value of the load’s current. In both of these approaches, the active currents flowing through the lines will reflect the amplitude and phase asymmetry that is present in the supply voltage. The APF system will follow the changes in power or load conditions and generate the correct value for the reference current. The calculations presented in the article, as well as the current and voltage waveforms, were created as a result of the constructed mathematical models, which were used for theoretical illustrations. Calculations and waveforms were generated based on a script written in Matlab.

2013 ◽  
Vol 811 ◽  
pp. 657-660 ◽  
Author(s):  
You Jie Ma ◽  
Hong De Yuan ◽  
Xue Song Zhou

With the wide application of power electronic equipments in power system, more and more harmonic are poured into the power system, which cause power pollution and make the power quality problem increasingly serious. Active power filter (APF) is an important equipment to compensate harmonic and reactive current in power system. One of the key technologies lies in the real-time and accurate control. The fundamental principles of several control strategies of compensate current were presented, and the respective merit and demerit of these control strategies were pointed out with contrast analysis in this paper. Active power filter will achieve a higher performance and a wider application with the continuous development of the control strategy.


2014 ◽  
Vol 15 (2) ◽  
pp. 177-194 ◽  
Author(s):  
Anup Kumar Panda ◽  
Ranjeeta Patel

Abstract In this paper, shoot-through current elimination DC–AC converter circuit has been presented with the application of active power filter (APF). The intuitive analysis of the shoot-through in the conventional DC–AC converter has been reported first. Interleaved buck (IB) converter is adopted to eliminate the shoot-through current, thereby increasing the reliability of the interleaved buck–based active power filter (IB-APF). The 3-phase 4-wire IB-APF eliminates the current harmonics produced by the load just as a conventional one does and are innately immune to “shoot-through” phenomenon, with the elimination of special protection features required in conventional inverter circuits. A comparison has been made about the compensation capabilities of the IB-APF with the PI and fuzzy logic controller (FLC) used by id–iq control strategy under different supply voltage conditions. The id–iq control strategy used for extracting the three-phase reference current for IB-APF, evaluating their performance here in MATLAB/Simulink environment and also implemented using real-time digital simulator hardware (OPAL-RT hardware). The RTDS result verifies that the total harmonic distortion percentage of the source current can be reduced below 5% according to IEEE-519 standard recommendations on harmonic limits.


Sign in / Sign up

Export Citation Format

Share Document