scholarly journals Development of a Flexible Framework Multi-Design Optimization Scheme for a Hand Launched Fuel Cell-Powered UAV

Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2951
Author(s):  
Zaid O. Alrayes ◽  
Mohamed Gadalla

This paper presents different methods for the design of a hand-launchable, fixed wing, fuel cell-powered unmanned aerial vehicle (UAV) to maximize flight endurance during steady level flight missions. The proposed design methods include the development of physical models for different propulsion system components. The performance characteristics of the aircraft are modeled through empirical contributing analyses in which each analysis corresponds to an aircraft subsystem. The contributing analyses are collected to form a design structure matrix which is included into a multi-disciplinary analysis to solve for the design variables over a defined design space. The optimal solution is found using a comprehensive optimization tool developed for long endurance flight missions. Optimization results showed a significant improvement in UAV flight endurance that reached up to 475 min with take-off ratio equals to 59 min/kg. Wind tunnel and bench-top tests and HiL simulation tests are performed to validate the results obtained from the optimization tools. Validated optimization results showed an increase of the overall UAV flight endurance by 19.4% compared to classical approaches in design methods.

2020 ◽  
Vol 08 (02) ◽  
pp. 95-117 ◽  
Author(s):  
Farbod Khoshnoud ◽  
Ibrahim I. Esat ◽  
Clarence W. de Silva ◽  
Jason D. Rhodes ◽  
Alina A. Kiessling ◽  
...  

A self-powered scheme is explored for achieving long-endurance operation, with the use of solar power and buoyancy lift. The end goal is the capability of “infinite” endurance while complying with the Unmanned Aerial Vehicle (UAV) dynamics and the required control performance, maneuvering, and duty cycles. Nondimensional power terms related to the UAV power demand and solar energy input are determined in a framework of Optimal Uncertainty Quantification (OUQ). OUQ takes uncertainties and incomplete information in the dynamics and control, available solar energy, and the electric power demand of a solar UAV model into account, and provides an optimal solution for achieving a self-sustained system in terms of energy. Self-powered trajectory tracking, speed and control are discussed. Aerial vehicles of this class can overcome the flight time limitations of current electric UAVs, thereby meeting the needs of many applications. This paper serves as a reference in providing a generalized approach in design of self-powered solar electric multi-rotor UAVs.


2012 ◽  
Vol 134 (10) ◽  
Author(s):  
Jeremy Agte ◽  
Nicholas Borer ◽  
Olivier de Weck

This article presents an integrated multistate method for the early-phase design of inherently robust systems; namely, those capable, as a prima facie quality, of maintaining adequate performance in the face of probabilistic system events or failures. The methodology merges integrated multidisciplinary analysis techniques for system design with behavioral-Markov analysis methods used to define probabilistic metrics such as reliability and availability. The result is a multistate approach that concurrently manipulates design variables and component failure rates to better identify key features for an inherently robust system. This methodology is demonstrated on the design of a long-endurance unmanned aerial vehicle for a three-month ice surveillance mission over Antarctica. The vehicle is designed using the multistate methodology and then compared to a baseline design created for the best performance under nominal conditions. Results demonstrated an improvement of 10–11% in system availability over this period with minimal impacts on cost or performance.


2016 ◽  
Vol 30 (7) ◽  
pp. 3401-3409 ◽  
Author(s):  
Moon-Yong Cha ◽  
Minjin Kim ◽  
Young-Jun Sohn ◽  
Tae-Hyun Yang ◽  
Seung-Gon Kim

2021 ◽  
Vol 9 (3) ◽  
pp. 2170031
Author(s):  
Betül Erdör Türk ◽  
Mustafa Hadi Sarul ◽  
Ekrem Çengelci ◽  
Çiğdem İyigün Karadağ ◽  
Fatma Gül Boyacı San ◽  
...  

2021 ◽  
Vol 92 (10) ◽  
pp. 618-622
Author(s):  
Yu. A. Burtsev ◽  
A. V. Pavlenko ◽  
I. V. Vasyukov ◽  
V. S. Puzin ◽  
A. V. Zhivodernikov

Author(s):  
Wei Huang ◽  
Chongcong Tao ◽  
Hongli Ji ◽  
Jinhao Qiu

Acoustic Black Hole (ABH) plate structure has shown promising potentials of vibration suppression above a cut on frequency. For energy dissipation below the cut on frequency, however, the ABH is less effective due to the absence of wave focusing effect. This work reports a simultaneous optimization of ABH plates for broadband energy dissipation. Two sets of design variables of ABH plates, that is, geometry of the profile and topology of the damping layer, are optimized in an alternatively nested procedure. A novel objective function, namely the upper limit of kinetic energy, is proposed. Modeling of ABH structures is implemented and dynamic characteristic is solved using finite element method. A rectangular plate embedded with two ABH indentations is presented as a numerical example. Influence of frequency ranges in the calculation and mass ratios of the damping layer on results are discussed. The achieved optimal arrangement of the damping layer is found to cover equally, if not more, above the non-ABH (uniform) part of the plate than the ABH area. This is inconsistent with the conventional believe that damping layers should cover as much of the ABH area as possible. Mechanism of the broadband energy dissipation by the optimal solution is demonstrated.


2018 ◽  
Vol 90 (7) ◽  
pp. 1077-1087 ◽  
Author(s):  
Pericles Panagiotou ◽  
Efstratios Giannakis ◽  
Georgios Savaidis ◽  
Kyros Yakinthos

Purpose The purpose of this paper is to present the preliminary design of a medium altitude long endurance (MALE) unmanned aerial vehicle (UAV), focusing on the interaction between the aerodynamic and the structural design studies. Design/methodology/approach The classic layout theory was used, adjusted for the needs of unmanned aircraft, including aerodynamic calculations, presizing methods and CFD, to estimate key aerodynamic and stability coefficients. Considering the structural aspects, a combination of layout, finite element methods and custom parameterized design tools were used, allowing automatic reshapes of the skin and the internal structural parts, which are mainly made of composite materials. Interaction loops were defined between the aforementioned studies to optimize the performance of the aerial vehicle, maximize the aerodynamic efficiency and reduce the structural weight. Findings The complete design procedure of a UAV is shown, starting from the final stages of conceptual design, up to the point where the detail design and mechanical drawings initiated. Practical implications This paper presents a complete view of a design study of a MALE UAV, which was successfully constructed and flight-tested. Originality/value This study presents a complete, synergetic approach between the configuration layout, aerodynamic and structural aspects of a MALE UAV.


Sign in / Sign up

Export Citation Format

Share Document