scholarly journals Multiple (TEES)-Criteria-Based Sustainable Planning Approach for Mesh-Configured Distribution Mechanisms across Multiple Load Growth Horizons

Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3128
Author(s):  
Syed Ali Abbas Kazmi ◽  
Usama Ameer Khan ◽  
Waleed Ahmad ◽  
Muhammad Hassan ◽  
Fahim Ahmed Ibupoto ◽  
...  

Modern distribution mechanisms within the smart grid paradigm are considered both reliable in nature and interconnected in topology. In this paper, a multiple-criteria-based sustainable planning (MCSP) approach is presented that serves as a future planning tool for interconnected distribution mechanisms and aims to find a feasible solution among conflicting criteria of various genres. The proposed methodology is based on three stages. In the stage 1, a weighted voltage stability index (VSI_W) and loss minimization condition (LMC) based approach aims at optimal asset optimization (sitting and sizing). In this stage, an evaluation of alternatives (solutions) is carried out across four dimensions (technical, economic, environmental, and social) of performance metrics. The assets considered in the evaluations include distributed generation (DG), renewable DGs, i.e., photovoltaic (PV), wind, and distributed static compensator (D-STATCOM) units. In the stage 2, various multicriteria decision-making (MCDM) methodologies are applied to ascertain the best trade-off among the available solutions in terms of techno-cost (economic) (TCPE), environment-o-social (ESPE), and techno-economic-environmental-socio (TEES) performance evaluations (OPE). In the stage 3, the alternatives are evaluated across multiple load growth horizons of 5 years each. The proposed MCSP approach is evaluated across a mesh-configured 33-bus active distribution network (ADN) and an actual NUST (which is a university in Islamabad, Pakistan) microgrid (MG), with various variants of load growth. The numerical findings of the proposed MCSP approach are compared with reported works the literature supports its validity and can serve as an important planning tool for interconnected distribution mechanisms for researchers and planning engineers.

Author(s):  
Satya R. T. Peddada ◽  
Kai A. James ◽  
James T. Allison

Abstract Packing and routing problems separately are each challenging NP-hard problems. Therefore, solving the coupled packing and routing problem simultaneously will require disruptive methods to better address pressing related challenges, such as system volume reduction, interconnect length reduction, ensuring non-intersection, and physics (heat, fluid pressure or electromagnetic) considerations. Here we present a novel two-stage sequential design framework to perform simultaneous physics-based packing and routing optimization. Stage 1 is comprised of generating interference-free initial layouts that are fed to stage 2 as starting points to perform continuous physics-based optimization. Three distinct strategies for stage 1 have been introduced recently, 1) the force-directed layout method (FDLM), 2) an extension of the shortest path algorithms (SPAs) and 3) a unique geometric topology (UGT) generation algorithm. In stage 2, a gradient-based topology optimization method is used to simultaneously optimize both component locations and routing paths of component interconnects. In addition to geometric considerations, this method supports optimization based on system behavior by including physics-based objectives and constraints (e.g., modeled using 1D lumped parameter and 2D finite element physics models). The three layout generation methods developed for stage 1 are compared here with respect to system performance metrics obtained from stage 2. In summary, the design automation framework presented here integrates several elements together as a step toward a more comprehensive solution of 3D packing and routing problems with both geometric and physics considerations.


2020 ◽  
Vol 10 (2) ◽  
pp. 36-55 ◽  
Author(s):  
Hamid A Jadad ◽  
Abderezak Touzene ◽  
Khaled Day

Recently, much research has focused on the improvement of mobile app performance and their power optimization, by offloading computation from mobile devices to public cloud computing platforms. However, the scalability of these offloading services on a large scale is still a challenge. This article describes a solution to this scalability problem by proposing a middleware that provides offloading as a service (OAS) to large-scale implementation of mobile users and apps. The proposed middleware OAS uses adaptive VM allocation and deallocation algorithms based on a CPU rate prediction model. Furthermore, it dynamically schedules the requests using a load-balancing algorithm to ensure meeting QoS requirements at a lower cost. The authors have tested the proposed algorithm by conducting multiple simulations and compared our results with state-of-the-art algorithms based on various performance metrics under multiple load conditions. The results show that OAS achieves better response time with a minimum number of VMs and reduces 50% of the cost compared to existing approaches.


1991 ◽  
Vol 111 (3) ◽  
pp. 69-79 ◽  
Author(s):  
Akihiko Yokoyama ◽  
Teruhisa Kumano ◽  
Yasuji Sekine

2020 ◽  
Vol 143 (3) ◽  
Author(s):  
Satya R. T. Peddada ◽  
Kai A. James ◽  
James T. Allison

Abstract Packing and routing separately are each challenging NP-hard problems. Therefore, solving the coupled packing and routing problem simultaneously will require disruptive methods to better address pressing-related challenges, such as system volume reduction, interconnect length reduction, ensuring non-intersection, and physics (thermal, hydraulic, or electromagnetic) considerations. Here we present a novel two-stage sequential design framework to perform simultaneous physics-based packing and routing optimization. Stage 1 generates interference-free initial layouts that are fed to stage 2 as starting points to perform continuous physics-based optimization. Three distinct strategies for stage 1 have been introduced recently, (1) the force-directed layout method (FDLM), (2) an extension of the shortest path algorithms (SPAs), and (3) a unique geometric topology (UGT) generation algorithm. In stage 2, a gradient-based topology optimization method is used to simultaneously optimize both component locations and interconnect routing paths. In addition to geometric considerations, this method supports optimization based on system behavior by including physics-based objectives and constraints. The proposed framework is demonstrated using three case studies. First, the layout generation methods developed for stage 1 are compared with respect to system performance metrics obtained from stage 2. Second, a multi-objective optimization problem using the epsilon-constraint method is solved to obtain Pareto optimal solutions. Third, an extension to multi-loop systems is demonstrated. In summary, the design automation framework integrates several elements together as a step toward a more comprehensive solution of 3D packing and routing problems with both geometric and physics considerations.


Energies ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1444
Author(s):  
Syed Ali Abbas Kazmi ◽  
Usama Ameer Khan ◽  
Hafiz Waleed Ahmad ◽  
Sajid Ali ◽  
Dong Ryeol Shin

The modern distribution networks under the smart grid paradigm have been considered both interconnected and reliable. In grid modernization concepts, the optimal asset optimization across a certain planning horizon is of core importance. Modern planning problems are more inclined towards a feasible solution amongst conflicting criteria. In this paper, an integrated decision-making planning (IDMP) approach is proposed. The proposed methodology includes voltage stability assessment indices linked with loss minimization condition-based approach, and is integrated with different multi-criteria decision-making methodologies (MCDM), followed by unanimous decision making (UDM). The proposed IDMP approach aims at optimal assets sitting and sizing in a meshed distribution network to find a trade-off solution with various asset types across normal and load growth horizons. An initial evaluation is carried out with assets such as distributed generation (DG), photovoltaic (PV)-based renewable DG, and distributed static compensator (D-STATCOM) units. The solutions for various cases of asset optimization and respective alternatives focusing on technical only, economic only, and techno-economic objectives across the planning horizon have been evaluated. Later, various prominent MCDM methodologies are applied to find a trade-off solution across different cases and scenarios of assets optimization. Finally, UDM is applied to find trade-off solutions amongst various MCDM methodologies across normal and load growth levels. The proposed approach is carried out across a 33-bus meshed configured distribution network. Findings from the proposed IDMP approach are compared with available works reported in the literature. The numerical results achieved have validated the effectiveness of the proposed planning approach in terms of better performance and an effective trade-off solution across various asset types.


Sign in / Sign up

Export Citation Format

Share Document