scholarly journals Taxonomy, Saving Potentials and Key Performance Indicators for Energy End-Use and Greenhouse Gas Emissions in the Aluminium Industry and Aluminium Casting Foundries

Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3571
Author(s):  
Joakim Haraldsson ◽  
Simon Johnsson ◽  
Patrik Thollander ◽  
Magnus Wallén

Increasing energy efficiency within the industrial sector is one of the main approaches in order to reduce global greenhouse gas emissions. The production and processing of aluminium is energy and greenhouse gas intensive. To make well-founded decisions regarding energy efficiency and greenhouse gas mitigating investments, it is necessary to have relevant key performance indicators and information about energy end-use. This paper develops a taxonomy and key performance indicators for energy end-use and greenhouse gas emissions in the aluminium industry and aluminium casting foundries. This taxonomy is applied to the Swedish aluminium industry and two foundries. Potentials for energy saving and greenhouse gas mitigation are estimated regarding static facility operation. Electrolysis in primary production is by far the largest energy using and greenhouse gas emitting process within the Swedish aluminium industry. Notably, almost half of the total greenhouse gas emissions from electrolysis comes from process-related emissions, while the other half comes from the use of electricity. In total, about 236 GWh/year (or 9.2% of the total energy use) and 5588–202,475 tonnes CO2eq/year can be saved in the Swedish aluminium industry and two aluminium casting foundries. The most important key performance indicators identified for energy end-use and greenhouse gas emissions are MWh/tonne product and tonne CO2-eq/tonne product. The most beneficial option would be to allocate energy use and greenhouse gas emissions to both the process or machine level and the product level, as this would give a more detailed picture of the company’s energy use and greenhouse gas emissions.

2019 ◽  
Vol 4 (2) ◽  
pp. 177-184
Author(s):  
Joakim Haraldsson ◽  
Maria Therese Johansson

The Paris Agreement includes the goals of ‘holding the increase in the global average temperature to well below 2°C above pre-industrial levels’ and ‘making finance flows consistent with a pathway towards low greenhouse gas emissions’. Industrial energy efficiency will play an important role in meeting those goals as well as becoming a competitive advantage due to reduced costs for companies. The aluminium industry is energy intensive and uses fossil fuels both for energy purposes and as reaction material. Additionally, the aluminium industry uses significant amounts of electricity. The electrolysis process in the primary production of aluminium is the most energy- and carbon-intensive process within the aluminium industry. The aim of this paper is to study the effects on primary energy use, greenhouse gas emissions and costs when three energy efficiency measures are implemented in the electrolysis process. The effects on the primary energy use, greenhouse gas emissions and costs are calculated by multiplying the savings in final energy use by a primary energy factor, emissions factor and price of electricity, respectively. The results showed significant savings in primary energy demand, greenhouse gas emissions and cost from the implementation of the three measures. These results only indicate the size of the potential savings and a site-specific investigation needs to be conducted for each plant. This paper is a part of a research project conducted in close cooperation with the Swedish aluminium industry.


2018 ◽  
Author(s):  
Adrian Camilleri ◽  
Richard P. Larrick ◽  
Shajuti Hossain ◽  
Dalia Echeverri

2021 ◽  
Vol 1 ◽  
Author(s):  
Jennie Moore

The British Columbia Institute of Technology (BCIT) is Canada's premier polytechnic. In 2008, BCIT partnered with its local electricity utility to hire a full-time energy manager. The following year, BCIT's School of Construction and the Environment initiated a campus-as-living-lab of sustainability project called Factor Four in the seven buildings it occupies on BCIT's main campus in Burnaby. The purpose was to explore whether a four-fold (75%) reduction in materials and energy use could be achieved without compromising service levels. By 2016, the project achieved a 50% reduction in energy use and associated greenhouse gas emissions. Factor Four attracted over four million dollars in funding, engaged over 250 students from 12 educational programs, and produced over $200,000 savings annually. In 2017, BCIT set an ambitious target to reduce its annual greenhouse gas emissions 33% below 2007 levels by 2023, and 80% by 2050, across all five of its campuses. BCIT’s ultimate goal is to become both greenhouse gas neutral and a net energy producer. By setting ambitious targets and systematically implementing energy efficiency improvements, utilizing waste-heat exchange, fuel switching, and developing on-site renewable energy, BCIT is on track to achieving its energy management and climate change goals.


2021 ◽  
Author(s):  
Antonia Schuster ◽  
Ilona M. Otto

<p>The Earth’s population of seven billion consume varying amounts of planetary resources with varying impacts on the environment.  We combine the analytical tools offered by the socio-ecological metabolism and class theory and propose a novel social stratification theory to identify the differences and hot spots in individual resource and energy use. The theory is applied to German society and we use per capita greenhouse gas emissions as a proxy for resource and energy use. We use socio-metabolic profiles of individuals from an economic, social and cultural perspective to investigate resource intensive lifestyles. The results show large disparities and inequalities in emission patterns in German society. For example, the greenhouse gas emissions in the lowest and highest emission classes can differ by a magnitude of ten. Income, education, age, gender and regional differences (FRG vs. GDR) result in distinct emission profiles. Class differentiation is also noted as economic, cultural and social factors influence individual carbon footprints. We also analyze the role of digital technologies, regarding resource and energy consumption, as a proxy for cultural capital. Highlighting inequalities within societies is a step towards downscaling carbon emission reduction targets that are key to avoid transgressing climate change planetary boundary. We discuss the results in the context of climate policy implications as well as behavioral changes that are needed to meet climate policy objectives.</p>


Sign in / Sign up

Export Citation Format

Share Document