scholarly journals Health-Conscious Optimization of Long-Term Operation for Hybrid PEMFC Ship Propulsion Systems

Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3813
Author(s):  
Chiara Dall’Armi ◽  
Davide Pivetta ◽  
Rodolfo Taccani

The need to decarbonize the shipping sector is leading to a growing interest in fuel cell-based propulsion systems. While Polymer Electrolyte Membrane Fuel Cells (PEMFC) represent one of the most promising and mature technologies for onboard implementation, they are still prone to remarkable degradation. The same problem is also affecting Lithium-ion batteries (LIB), which are usually coupled with PEMFC in hybrid powertrains. By including the combined degradation effects in an optimization strategy, the best compromise between costs and PEMFC/LIB lifetime could be determined. However, this is still a challenging yet crucial aspect, rarely addressed in the literature and rarely yet explored. To fill this gap, a health-conscious optimization is here proposed for the long-term minimization of costs and PEMFC/LIB degradation. Results show that a holistic multi-objective optimization allows a 185% increase of PEMFC/LIB lifetime with respect to a fuel-consumption-minimization-only approach. With the progressive ageing of PEMFC/LIB, the hybrid propulsion system modifies the energy management strategy to limit the increase of the daily operation cost. Comparing the optimization results at the beginning and the end of the plant lifetime, daily operation costs are increased by 73% and hydrogen consumption by 29%. The proposed methodology is believed to be a useful tool, able to give insights into the effective costs involved in the long-term operation of this new type of propulsion system.

Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 4048
Author(s):  
Huu Linh Nguyen ◽  
Jeasu Han ◽  
Xuan Linh Nguyen ◽  
Sangseok Yu ◽  
Young-Mo Goo ◽  
...  

Durability is the most pressing issue preventing the efficient commercialization of polymer electrolyte membrane fuel cell (PEMFC) stationary and transportation applications. A big barrier to overcoming the durability limitations is gaining a better understanding of failure modes for user profiles. In addition, durability test protocols for determining the lifetime of PEMFCs are important factors in the development of the technology. These methods are designed to gather enough data about the cell/stack to understand its efficiency and durability without causing it to fail. They also provide some indication of the cell/stack’s age in terms of changes in performance over time. Based on a study of the literature, the fundamental factors influencing PEMFC long-term durability and the durability test protocols for both PEMFC stationary and transportation applications were discussed and outlined in depth in this review. This brief analysis should provide engineers and researchers with a fast overview as well as a useful toolbox for investigating PEMFC durability issues.


Author(s):  
E. Ejiri ◽  
K. Yamada

The basic performance of a banded structure membrane fuel cell module (rated power of 90W), which consisted of 15 polymer electrolyte membrane fuel cells laid out in a plane, was experimentally investigated. The results show that the module operated for a much longer time at an inclination angle, θ, of 90deg than at θ=0deg or 180deg, where it experienced a sudden power breakdown at the rated operating point. The output voltage and internal impedance of each cell in the module were specifically monitored over a long-term operation. Measurements were made of the temperature distribution of the entire module as well as of the oxygen concentration and relative humidity at a specific cell. Airflow near the cathode in a single cell was also visualized. It was concluded that the power breakdown was probably caused by flooding in the anode of one of the most downstream cells of the module.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5920
Author(s):  
Marko Kapetanović ◽  
Mohammad Vajihi ◽  
Rob M. P. Goverde

This paper presents a simulation-based analysis of hybrid and plug-in hybrid propulsion system concepts for diesel-electric multiple unit regional railway vehicles. These alternative concepts primarily aim to remove emissions in terminal stops with longer stabling periods, with additional benefits reflected in the reduction of overall fuel consumption, produced emissions, and monetary costs. The alternative systems behavior is modeled using a backward-looking quasi-static simulation approach, with the implemented energy management strategy based on a finite state machine control. A comparative assessment of alternative propulsion systems is carried out in a case study of a selected regional railway line operated by Arriva, the largest regional railway undertaking in the Netherlands. The conversion of a standard diesel-electric multiple unit vehicle, currently operating on the network, demonstrated a potential GHG reduction of 9.43–56.92% and an energy cost reduction of 9.69–55.46%, depending on the type of service (express or stopping), energy storage technology selection (lithium-ion battery or double-layer capacitor), electricity production (green or grey electricity), and charging facilities configuration (charging in terminal stations with or without additional charging possibility during short intermediate stops) used. As part of a bigger project aiming to identify optimal transitional solutions towards emissions-free trains, the outcomes of this study will help in the future fleet planning.


2015 ◽  
Vol 240 ◽  
pp. 191-197
Author(s):  
Dominik Głowacki ◽  
Krzysztof Bogdański ◽  
Miroslaw Rodzewicz

The work concerns the research of a propulsion system for an unmanned aerial vehicle MOSUPS in joined wing configuration. Modeling, analysis and experimental research of a statically unbalanced rotor of a ducted fan propulsion system has been conducted.The aim of the analysis was to determine the critical rotational speeds of the rotor due to the probable excitation of oscillations. Due to the complex geometry, Finite Element Method has been used for the calculations. In the study, the critical frequencies (and also rotational speeds) of the rotor as well as precessional instability, flexibly mounted in the bearings have been calculated. Campbell and SAFE diagrams have been presented.Furthermore, the paper presents the idea for a device for automatic dynamic balancing of the mentioned rotor. A mechanism for changing the position of the correction weights has been developed, allowing for a long term operation of rotating parts without the need to stop the unit and correcting the unbalance.The main motivation for work was to fully understand the working conditions of the propulsion system and dynamic properties of the rotor in order to carry out a proper assessment of their impact on the safe operation of the aircraft.


Author(s):  
Michael Schneider ◽  
Jens Dickhoff ◽  
Karsten Kusterer ◽  
Wilfried Visser

Abstract In the recent decades, civil aviation was growing 4.7% per annum. In order to reduce emissions promoting the global warming process, alternative propulsion systems are needed. Full-electric propulsion systems in aviation might have the potential for emission-free flights using renewable energy. However, several research efforts indicate electric propulsion only seems feasible for small aircraft. Especially due to the low energy density of batteries compared to fossil fuels. For this reason, hybrid propulsion systems came into focus, combining the benefits of all-electric and conventional propulsion system concepts. It is also considered as bridging technology, system test and basis for component development — and therewith paves the way towards CO2 free aviation. In the ‘HyFly’ project (supported by the German Luftfahrtforschungsprogramm LuFo V-3), the potential of a hybrid electric concept for a short/mid-range 19 PAX aircraft is assessed — not only on system but also on single component basis. In a recent study, the propulsion architecture and the operating mode of the gas turbine and the electric components have been defined [1]. In this paper, the advantages of the hybrid propulsion architecture and a qualitative assessment of component life are presented. Methods for life time prediction for the aircraft engine, the electric motor, the reluctance generator and the battery are discussed. The impact of turbine inlet temperature on life consumption is analyzed. The life cycle of the aircraft engine and the electric components including gradual component deterioration and consequent performance degradation is simulated by using an in-house gas turbine simulation tool (GTPsim). Therefore, various effects on electric propulsion system can be predicted for the entire drivetrain system in less than one hour.


Sign in / Sign up

Export Citation Format

Share Document