scholarly journals Lactic Acid-Based Solvents for Sustainable EDLC Electrolytes

Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4250
Author(s):  
Massimo Melchiorre ◽  
Roberto Esposito ◽  
Martino Di Serio ◽  
Giancarlo Abbate ◽  
Alessandro Lampasi ◽  
...  

The most relevant electrolytes used in commercial electrical double layer capacitors (EDLCs) are based on non-aqueous solvents as acetonitrile (ACN) and propylene carbonate (PC). However, these solvents are synthesized from non-renewable fossil feedstocks, making it desirable to develop more sustainable alternatives. To address this issue, in this work lactic acid was used to synthesize a panel of substances with small structural variation. The investigated products belong to the chemical family of ketals, and among them the 5-methyl-1,3-dioxolan-4-one (LA-H,H) was found to be the most suitable to prepare electrolytic solutions. Therefore, LA-H,H was combined with triethylmethylammonium tetrafluoroborate (TEMABF4), and analyzed in symmetrical EDLC. This electrolyte was thoroughly characterized by cyclic voltammetry, galvanostatic cycles and electrochemical impedance spectroscopy (EIS), disclosing competitive performances compared to PC-based electrolyte. The EDLC with LA-H,H/TEMABF4 displayed a specific energy and power of 13.4 Whkg−1 and 22.5 kWkg−1 respectively, with an optimal cycling stability over 5000 cycles at different current densities.

The aim of this work is to introduce bacteria into the matrix of natural phosphate to catalyze the phenol oxidation in the wastewater.This electrode, designated subsequently by bacteria-NP-CPE, Showed stable response and was characterized with voltammeter methods, as cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and DRX. The experimental results revealed that the prepared electrode could be a feasible for degradation of hazardous phenol pollutants in the wastewater.


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Juan Zhou ◽  
Qiao Chen ◽  
Li-lan Wang ◽  
Yong-hua Wang ◽  
Ying-zi Fu

The paper reported that a simple chiral selective interface constructed by (1R, 2R)-2-amino-1, 2-diphenyl ethanol had been developed to discriminate tryptophan enantiomers. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used for the characteristic analysis of the electrode. The results indicated that the interface showed stable and sensitive property to determine the tryptophan enantiomers. Moreover, it exhibited the better stereoselectivity for L-tryptophan than that for D-tryptophan. The discrimination characteristics of the chiral selective interface for discriminating tryptophan enantiomers, including the response time, the effect of tryptophan enantiomers concentration, and the stability, were investigated in detail. In addition, the chiral selective interface was used to determine the enantiomeric composition of L- and D-tryptophan enantiomer mixtures by measuring the relative change of the peak current as well as in pure enantiomeric solutions. These results suggested that the chiral selective interface has the potential for enantiomeric discrimination of tryptophan enantiomers.


Sign in / Sign up

Export Citation Format

Share Document