scholarly journals Solar-Driven Desalination Using Nanoparticles

Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5743
Author(s):  
Dmitrii M. Kuzmenkov ◽  
Pavel G. Struchalin ◽  
Andrey V. Olkhovskii ◽  
Vladimir S. Yunin ◽  
Kirill V. Kutsenko ◽  
...  

Due to the high light absorption and the possibility of localizing boiling to the interior of the receiver, nanoparticles are promising for solar-driven desalination. The paper presents an experimental study of the nanoparticle-based photothermal boiling of water with sea salt. The experiments were carried out using a laboratory-scale system with a transparent photothermal receiver of light and a closed condensate cycle. In this study, we tested three types of nanoparticles: multiwall carbon nanotubes with two main sizes of 49 nm and 72 nm, 110 nm iron oxide particles Fe3O4, and a commercial paste based on carbon nanotubes. The concentration of nanoparticles was varied up to 10% wt. We found that the nanoparticles enhance the steam generation by 23%, relative to a conventional desalinator with a black-body receiver. The best result was obtained for the 5% wt. concentration of carbon nanotubes.

2013 ◽  
Vol 284-287 ◽  
pp. 429-433
Author(s):  
Yun Hsih Chou ◽  
Yih Guang Jan ◽  
Liang Yu Yen ◽  
Chao Chung Huang ◽  
Chuan Ping Juan ◽  
...  

The light reflectivity of multiwall carbon nanotubes (MWCNTs) in the 1150nm - 1755 nm wavelength range with pattern-less and pattern-grown nanotubes are studied. From test measurements it concludes that when the multiwall carbon nanotubes are pattern-grown fabricated its return loss is linearly proportional to the nanotubes grown height and consequently the pattern-grown CNTs can be implemented as a good optical attenuator. However for high density nanotubes fabricated with pattern-less process it has greater than 45 dB return loss, this is equivalent to have less than 0.56% reflectivity; with this high absorption effect it can be utilized as a black body absorber.


2018 ◽  
Author(s):  
Gen Hayase

By exploiting the dispersibility and rigidity of boehmite nanofibers (BNFs) with a high aspect ratio of 4 nm in diameter and several micrometers in length, multiwall-carbon nanotubes (MWCNTs) were successfully dispersed in aqueous solutions. In these sols, the MWCNTs were dispersed at a ratio of about 5–8% relative to BNFs. Self-standing BNF–nanotube films were also obtained by filtering these dispersions and showing their functionality. These films can be expected to be applied to sensing materials.


2016 ◽  
Vol 25 (4) ◽  
pp. 459-464 ◽  
Author(s):  
M.I. Abduo ◽  
A.S. Dahab ◽  
Hesham Abuseda ◽  
Abdulaziz M. AbdulAziz ◽  
M.S. Elhossieny

Sign in / Sign up

Export Citation Format

Share Document