scholarly journals Numerical Simulation of Heat Transport Problems in Porous Media Coupled with Water Flow Using the Network Method

Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5755
Author(s):  
José Antonio Jiménez-Valera ◽  
Gonzalo García-Ros ◽  
Iván Alhama

In the present work, a network model for the numerical resolution of the heat transport problem in porous media coupled with a water flow is presented. Starting from the governing equations, both for 1D and 2D geometries, an equivalent electrical circuit is obtained after their spatial discretization, so that each term or addend of the differential equation is represented by an electrical device: voltage source, capacitor, resistor or voltage-controlled current source. To make this possible, it is necessary to establish an analogy between the real physical variables of the problem and the electrical ones, that is: temperature of the medium and voltage at the nodes of the network model. The resolution of the electrical circuit, by means of the different circuit resolution codes available today, provides, in a fast, simple and precise way, the exact solution of the temperature field in the medium, which is usually represented by abaci with temperature-depth profiles. At the end of the article, a series of applications allow, on the one hand, to verify the precision of the numerical tool by comparison with existing analytical solutions and, on the other, to show the power of calculation and representation of solutions of the network models presented, both for problems in 1D domains, typical of scenarios with vertical flows, and for 2D scenarios with regional flow.

2015 ◽  
Vol 39 (21) ◽  
pp. 6580-6598 ◽  
Author(s):  
Michal Beneš ◽  
Lukáš Krupička ◽  
Radek Štefan

2019 ◽  
Vol 875 ◽  
Author(s):  
Bauyrzhan K. Primkulov ◽  
Amir A. Pahlavan ◽  
Xiaojing Fu ◽  
Benzhong Zhao ◽  
Christopher W. MacMinn ◽  
...  

We develop a novel ‘moving-capacitor’ dynamic network model to simulate immiscible fluid–fluid displacement in porous media. Traditional network models approximate the pore geometry as a network of fixed resistors, directly analogous to an electrical circuit. Our model additionally captures the motion of individual fluid–fluid interfaces through the pore geometry by completing this analogy, representing interfaces as a set of moving capacitors. By incorporating pore-scale invasion events, the model reproduces, for the first time, both the displacement pattern and the injection-pressure signal under a wide range of capillary numbers and substrate wettabilities. We show that at high capillary numbers the invading patterns advance symmetrically through viscous fingers. In contrast, at low capillary numbers the flow is governed by the wettability-dependent fluid–fluid interactions with the pore structure. The signature of the transition between the two regimes manifests itself in the fluctuations of the injection-pressure signal.


2004 ◽  
Vol 9 (2) ◽  
pp. 91-102 ◽  
Author(s):  
Scott W. Weeks ◽  
Graham C. Sander ◽  
Roger D. Braddock ◽  
Chris J. Matthews

Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 757
Author(s):  
Tianyi Su ◽  
Wenqing Zhang ◽  
Zhijun Zhang ◽  
Xiaowei Wang ◽  
Shiwei Zhang

A 2D axi-symmetric theoretical model of dielectric porous media in intermittent microwave (IMW) thermal process was developed, and the electromagnetic energy, multiphase transport, phase change, large deformation, and glass transition were taken into consideration. From the simulation results, the mass was mainly carried by the liquid water, and the heat was mainly carried by liquid water and solid. The diffusion was the dominant mechanism of the mass transport during the whole process, whereas for the heat transport, the convection dominated the heat transport near the surface areas during the heating stage. The von Mises stress reached local maxima at different locations at different stages, and all were lower than the fracture stress. A material treated by a longer intermittent cycle length with the same pulse ratio (PR) tended to trigger the phenomena of overheat and fracture due to the more intense fluctuation of moisture content, temperature, deformation, and von Mises stress. The model can be extended to simulate the intermittent radio frequency (IRF) process on the basis of which one can select a suitable energy source for a specific process.


Sign in / Sign up

Export Citation Format

Share Document