scholarly journals Wake Shape and Height Profile Measurements in a Concave Open Channel Flow Regarding the Target in DONES

Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6506
Author(s):  
Björn Brenneis ◽  
Sergej Gordeev ◽  
Sebastian Ruck ◽  
Leonid Stoppel ◽  
Wolfgang Hering

Wakes appearing downstream of disturbances on the surface of a water flow in a concave open channel were examined experimentally. The investigated channel geometry was similar to the liquid lithium target in DONES (Demonstration fusion power plant Oriented NEutron Source). The objective of the measurements was to analyze the effect of a disturbance on the downstream layer thickness. For measuring the height profiles in the channel, an optical measurement system based on laser triangulation was developed. It was shown that the wake of the undisturbed flow emerged from the nozzle corner, which was in accordance with analytical solutions. For sufficiently large disturbances at the nozzle edge, the height profiles located downstream showed symmetrical minima and maxima on both sides of the disturbance. The wake depth strongly depended on the diameter and penetration depth of the disturbance, as well as the circumferential position in the channel, which yields to a critical wake depth of one millimeter for the lithium target in DONES.

2021 ◽  
Author(s):  
Zhen Wang ◽  
Shichao Zhang ◽  
Zhibin Chen ◽  
Jiangtao Jia ◽  
Chao Chen

2017 ◽  
Vol 57 (11) ◽  
pp. 116056 ◽  
Author(s):  
M. Ono ◽  
R. Majeski ◽  
M.A. Jaworski ◽  
Y. Hirooka ◽  
R. Kaita ◽  
...  

1994 ◽  
Vol 30 (2) ◽  
pp. 53-61 ◽  
Author(s):  
Shiyu Li ◽  
Guang Hao Chen

A mathematical model is proposed to predict the removal of dissolved organic substances and the consumption of dissolved oxygen by attached biofilms in an open-channel flow. The model combines the biofilm equations with the conventional Streeter–Phelps type equations of river water quality by considering the mass transfer of organics and oxygen in the river water through the diffusion layer into the biofilm. It is assumed that the diffusion and reaction within the biofilm are of steady-state, and follow Monod kinetics. The model is solved numerically with a trial-and-error method. The simulation results of the model for an ideal case of river flow and biofilm show that the organic removal rate and oxygen consumption rate caused by the biofilm are greater than that by suspended biomass. The effects of diffusion layer thickness, flow velocity, and biofilm thickness on the change of river water quality are discussed.


Sign in / Sign up

Export Citation Format

Share Document