scholarly journals An Efficient Parameter Estimation Algorithm for Proton Exchange Membrane Fuel Cells

Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7115
Author(s):  
Mohamed Abdel-Basset ◽  
Reda Mohamed ◽  
Victor Chang

The proton exchange membrane fuel cell (PEMFC) is a favorable renewable energy source to overcome environmental pollution and save electricity. However, the mathematical model of the PEMFC contains some unknown parameters which have to be accurately estimated to build an accurate PEMFC model; this problem is known as the parameter estimation of PEMFC and belongs to the optimization problem. Although this problem belongs to the optimization problem, not all optimization algorithms are suitable to solve it because it is a nonlinear and complex problem. Therefore, in this paper, a new optimization algorithm known as the artificial gorilla troops optimizer (GTO), which simulates the collective intelligence of gorilla troops in nature, is adapted for estimating this problem. However, the GTO is suffering from local optima and low convergence speed problems, so a modification based on replacing its exploitation operator with a new one, relating the exploration and exploitation according to the population diversity in the current iteration, has been performed to improve the exploitation operator in addition to the exploration one. This modified variant, named the modified GTO (MGTO), has been applied for estimating the unknown parameters of three PEMFC stacks, 250 W stack, BCS-500W stack, and SR-12 stack, used widely in the literature, based on minimizing the error between the measured and estimated data points as the objective function. The outcomes obtained by applying the GTO and MGTO on those PEMFC stacks have been extensively compared with those of eight well-known optimization algorithms using various performance analyses, best, average, worst, standard deviation (SD), CPU time, mean absolute percentage error (MAPE), and mean absolute error (MAE), in addition to the Wilcoxon rank-sum test, to show which one is the best for solving this problem. The experimental findings show that MGTO is the best for all performance metrics, but CPU time is competitive among all algorithms.

2013 ◽  
Vol 10 (5) ◽  
Author(s):  
Ágnes Havasi ◽  
Róbert Horváth ◽  
Tamás Szabó

The functioning and the achievable power of a proton exchange membrane fuel cell (PEMFC) are determined by several parameters simultaneously. Part of these cannot be measured directly. They must be estimated with parameter fitting techniques. In order to give reliable estimations for the unknown parameters, we first set up an adequate finite difference numerical solution of the mathematical model of the fuel cell. Then the values of the unknown parameters are calculated by fitting the model results to measurements. In this paper our primary aim is to compare several parameter fitting tools on the model of a PEMFC and give a prescription for the use of these methods. We test three methods together with their variants: the Levenberg–Marquardt method, the trust region method, and the simulated annealing method, among which the Levenberg–Marquardt method turns to be the most efficient one.


Author(s):  
Milos Milanovic ◽  
Patrick Rose ◽  
Verica Radisavljevic-Gajic ◽  
Garrett Clayton

In this paper a full nonlinear dynamic control oriented mathematical model of Proton Exchange Membrane (PEM) fuel cell system is developed. The model is structured as a nonlinear five state space model. The derivation of each state equation is based on physics fundamental principles using thermodynamic theory of ideal gas mixtures, conservation of mass law, flow dynamics in serpentine flow channels and diffusion. The output of proposed model, stack voltage, is developed from Nernst equation that includes three main types of losses occurring in the fuel cell. The unknown parameters of the model are estimated and fitted using sets of steady state experimental data. Stack polarization curve of the proposed model is validated by using sets of data for three different values of inlet pressures. Experimental setup used to attain data is the Greenlight Innovation G60 fuel cell test station system and TP50 Fuel Cell stack.


2012 ◽  
Vol 26 (19) ◽  
pp. 1250121 ◽  
Author(s):  
J. L. TANG ◽  
C. Z. CAI ◽  
S. ZHAO

Studies have shown that numerous operating parameters affecting the proton exchange membrane fuel cell (PEMFC) performance, such as fuel cell operating temperature, operating pressure, anode/cathode humidification temperatures, anode/cathode stoichiometric flow ratios. In order to improve performance of fuel cell systems, it is advantageous to have an accurate model with which one can predict fuel cell behavior at different operating conditions. In this paper, a model using support vector regression (SVR) approach combining with particle swarm optimization (PSO) algorithm for its parameter optimization was developed to modeling and predicting the electrical power of proton exchange membrane fuel cell. The accuracy and reliability of the constructed support vector regression model are validated by leave-one-out cross-validation. Prediction results show that the maximum absolute percentage error does not exceed 5%, the mean absolute percentage error (MAPE) reached 0.68% and the correlation coefficient (R2) as high as 0.998. This implies that one can estimate an available combination of controller parameters by using support vector regression model to get suitable electrical power of proton exchange membrane fuel cell system.


2021 ◽  
Vol 29 (2) ◽  
pp. 619-631
Author(s):  
A. M. Abdullah ◽  
Hegazy Rezk ◽  
A. Hadad ◽  
Mohamed K. Hassan ◽  
A. F. Mohamed

Sign in / Sign up

Export Citation Format

Share Document