scholarly journals The Impact of Aging-Preventive Algorithms on BESS Sizing under AGC Performance Standards

Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7231
Author(s):  
Cristobal Morales ◽  
Augusto Lismayes ◽  
Hector Chavez ◽  
Harold Chamorro ◽  
Lorenzo Reyes-Chamorro

It is normally accepted that Battery Energy Storage Systems improve frequency regulation by providing fast response to the Automatic Generation Control. However, currently available control strategies may lead to early Energy Storage Systems aging given that Automatic Generation Control requirements are increasing due to zero carbon power generation integration. In this sense, it is important to analyze the aging phenomena in order to assess the technical–economical usefulness of Battery Energy Storage Systems towards zero carbon power systems. In order to avoid early aging, various proposals on aging-reducing algorithms can be found; however, it is unclear if those aging-reducing algorithms affect the performance of Battery Energy Storage Systems. It is also unclear whether those effects must be internalized to properly dimension the capacity of Battery Energy Storage Systems to both comply with performance standards and to prevent early aging. Thus, this paper estimates the storage capacity of a Battery Energy Storage Systems to comply with Automatic Generation Control performance standard under aging-reducing operating algorithms by dynamics simulations of a reduced-order, empirically-validated model of the Electric Reliability Council of Texas. The results show the relationship between the required performance of Automatic Generation Control and Battery Energy Storage System capacity, considering a 1-year simulation of Automatic Generation Control dynamics. It can be concluded that the compliance with performance standards is strongly related to the storage capacity, regardless of how fast the device can inject or withdraw power from the grid. Previous results in the state-of-the-art overlook the quantification of this relationship between compliance with performance standards and storage capacity.

2022 ◽  
Vol 12 (2) ◽  
pp. 596
Author(s):  
Apostolos G. Papakonstantinou ◽  
Stavros A. Papathanassiou

Efficient storage participation in the secondary frequency regulation of island systems is a prerequisite towards their complete decarbonization. However, energy reserve limitations of storage resources pose challenges to their integration in centralized automatic generation control (AGC). This paper presents a frequency control method, in which battery energy storage systems (BESSs) participate in automatic frequency restoration reserve (aFRR) provision, through their integration in the AGC of an island system. A local state of charge (SOC) controller ensures safe operation of the BESS in case of disturbances, without jeopardizing system security when available energy reserves are diminishing. The aFRR participation factors of regulating units are altered when the storage systems approach their SOC limits, re-allocating their reserves to other load-following units. Restoration of BESS energy reserves is achieved by integrating SOC regulation in the real-time economic dispatch of the system, formulated as a mixed-integer linear programming problem and solved every few minutes to determine the base points of the AGC units. A small autonomous power system, comprising conventional units, renewable energy sources and a BESS, is used as a study case to evaluate the performance of the proposed method, which is compared with alternative approaches to secondary regulation with BESS participation.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2503
Author(s):  
Paulo Rotella Junior ◽  
Luiz Célio Souza Rocha ◽  
Sandra Naomi Morioka ◽  
Ivan Bolis ◽  
Gianfranco Chicco ◽  
...  

Sources such as solar and wind energy are intermittent, and this is seen as a barrier to their wide utilization. The increasing grid integration of intermittent renewable energy sources generation significantly changes the scenario of distribution grid operations. Such operational challenges are minimized by the incorporation of the energy storage system, which plays an important role in improving the stability and the reliability of the grid. This study provides the review of the state-of-the-art in the literature on the economic analysis of battery energy storage systems. The paper makes evident the growing interest of batteries as energy storage systems to improve techno-economic viability of renewable energy systems; provides a comprehensive overview of key methodological possibilities for researchers interested in economic analysis of battery energy storage systems; indicates the need to use adequate economic indicators for investment decisions; and identifies key research topics of the analyzed literature: (i) photovoltaic systems with battery energy storage systems for residential areas, (ii) comparison between energy storage technologies, (iii) power quality improvement. The last key contribution is the proposed research agenda.


Sign in / Sign up

Export Citation Format

Share Document