scholarly journals Application of Empirical Mode Decomposition and Extreme Learning Machine Algorithms on Prediction of the Surface Vibration Signal

Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7519
Author(s):  
Yan Shen ◽  
Ping Wang ◽  
Xuesong Wang ◽  
Ke Sun

Accurately predicting surface vibration signals of diesel engines is the key to evaluating the operation quality of diesel engines. Based on an improved empirical mode decomposition and extreme learning machine algorithm, the characteristics of diesel engine surface vibration signal were detected, predicted, and analyzed. First, the surface vibration signal was decomposed into a series of signal components by an improved empirical mode decomposition algorithm. Then, the extreme learning machine algorithm was applied to each signal component to obtain the predicted value of the corresponding signal component and determine the characteristics of the ground vibration signal. Compared with the empirical mode decomposition–extremum learning machine algorithm and the extremum learning machine algorithm, the results show that the improved empirical mode decomposition–extremum learning machine algorithm is feasible and effective.

Forecasting ◽  
2021 ◽  
Vol 3 (3) ◽  
pp. 460-477
Author(s):  
Sajjad Khan ◽  
Shahzad Aslam ◽  
Iqra Mustafa ◽  
Sheraz Aslam

Day-ahead electricity price forecasting plays a critical role in balancing energy consumption and generation, optimizing the decisions of electricity market participants, formulating energy trading strategies, and dispatching independent system operators. Despite the fact that much research on price forecasting has been published in recent years, it remains a difficult task because of the challenging nature of electricity prices that includes seasonality, sharp fluctuations in price, and high volatility. This study presents a three-stage short-term electricity price forecasting model by employing ensemble empirical mode decomposition (EEMD) and extreme learning machine (ELM). In the proposed model, the EEMD is employed to decompose the actual price signals to overcome the non-linear and non-stationary components in the electricity price data. Then, a day-ahead forecasting is performed using the ELM model. We conduct several experiments on real-time data obtained from three different states of the electricity market in Australia, i.e., Queensland, New South Wales, and Victoria. We also implement various deep learning approaches as benchmark methods, i.e., recurrent neural network, multi-layer perception, support vector machine, and ELM. In order to affirm the performance of our proposed and benchmark approaches, this study performs several performance evaluation metric, including the Diebold–Mariano (DM) test. The results from the experiments show the productiveness of our developed model (in terms of higher accuracy) over its counterparts.


Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3471
Author(s):  
Wei Sun ◽  
Junjian Zhang

In response to climate change and environmental issues, many countries have gradually optimized carbon market management and improved the carbon market trading mechanism. Carbon price prediction plays a pivotal role in promoting carbon market management when investors are guided by prediction to conduct rational carbon trading. A novel carbon price prediction methodology is constructed based on ensemble empirical mode decomposition, improved bat algorithm, and extreme learning machine (EEMD-IBA-ELM) in this study. Firstly, the carbon price is decomposed into multiple regular intrinsic mode function (IMF) components by the ensemble empirical mode decomposition, and partial autocorrelation analysis (PACF) is used to find IMF historical data affecting the current value of IMF. Secondly, the improved bat algorithm (IBA) is used to heighten extreme learning machine (ELM) while adaptive parameters are obtained. Finally, EEMD-IBA-ELM was established to predict carbon price. Simultaneously, energy price fluctuation is introduced into the carbon price prediction model. As a consequence, EEMD-IBA-ELM carbon price prediction ability is further improved. In the empirical analysis, the historical carbon price of European Climate Exchange (ECX) and Korea Exchange (KRX) markets are used to examine the effectiveness and stability of the model. Errors of carbon price prediction in ECX and KRX is 2.1982% and 1.1762%, respectively. The results show that the EEMD-IBA-ELM carbon price prediction model can accurately predict carbon price when prediction effect shows strong stability. Furthermore, carbon price prediction accurateness was significantly enhanced by using energy price fluctuation as an influencing factor of carbon price prediction.


Sign in / Sign up

Export Citation Format

Share Document