scholarly journals CO2 Liquefaction Close to the Triple Point Pressure

Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8220
Author(s):  
Stian Trædal ◽  
Jacob Hans Georg Stang ◽  
Ingrid Snustad ◽  
Martin Viktor Johansson ◽  
David Berstad

For vessel-based transport of liquid CO2 in carbon capture and storage chains, transport at 8 bar(a) enable significant cost reductions compared to transport at higher pressures for most transport distances and volumes. Transport at even lower pressures could further reduce the costs. There are, however, concerns related to dry ice formation and potential clogging in parts of the chain that could lead to operational issues when operating close to the triple point pressure of CO2. In this paper, results from an experimental campaign to de-risk and gain operational experience from the low-pressure CO2 liquefaction process are described. Six experiments using pure CO2 or CO2/N2 mixtures are presented. In four of the experiments, the liquid product pressure was continuously lowered until dry ice was detected and eventually clogged the system. In the final two experiments, the liquefaction process was run in steady-state at low liquefaction pressures for five hours to ensure that there is no undetected dry ice in the process that could lead to accumulation and operational issues over time. These experiments demonstrate that pure CO2 can be safely liquefied at 5.8 bar(a) and a CO2/N2 mixture can be liquefied at 6.5 bar(a) without issues related to dry ice formation.

2014 ◽  
Vol 6 ◽  
pp. 253413 ◽  
Author(s):  
Qing Zhao ◽  
Yuxing Li ◽  
Shunli Li

Transportation safety of supercritical CO2 pipeline is a key aspect of carbon capture and storage (CCS). For reducing the high pressure in supercritical pipeline when accidental cases arise, man-made release will be applied using chocking process. The downstream parameters of chocking process can be predicted based on the adiabatic process assumption. In the critical chocking process, the critical velocity at outlet is sonic. A chocking pipe can be designed for buffering between different chocking orifices according to the length of turbulence area produced by jetting momentum. For the effect of noise hazard produced by large jetting velocity, a muffler can be applied at the outlet of final stage orifice to atmosphere. For the influence of impurities on the chocking process of anthropogenic CO2 pipeline, the presence of SO2 as an impurity is helpful for increasing the downstream temperatures through the chocking device to prevent the frozen hazard, whereas the presence of N2 as an impurity indicates a lower downstream temperature. The higher initial temperature can prevent the dry ice formation at the outlet of vent pipe when the multistage chocking is applied.


Sign in / Sign up

Export Citation Format

Share Document