scholarly journals Performance Investigation Based on Vital Factors of Agricultural Feeder Supported by Solar Photovoltaic Power Plant

Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 75
Author(s):  
Nivedita Padole ◽  
Ravindra Moharil ◽  
Anuradha Munshi

Solar photovoltaic (SPV) installations are growing in the distribution network due to the continuously decreasing prices of solar photovoltaic panels. Installing the SPV Plant on the distribution feeder supplying to the agricultural pumps is a challenging task due to the varying agricultural load pattern of the Agricultural Feeder (AG Feeder). Supply of power and demand creates potential challenges in the low voltage (LV) distribution system. This paper presents a case study of a 2 MW SPV connected to an agricultural feeder in India. Performance analysis has been carried out using field measurement data. The key parameters such as PV Penetration and Capacity Utilization Factor (CUF) are calculated for analysis. Parameters such as Grid Dependency of the load and PV Contribution have been introduced in this paper, which relates to the SPV system behavior more aptly. It is recommended that the Time of Day (ToD) metering with the lowest cost during the solar generation hours will make agricultural consumers shift their demand matching with solar generation hours. Extensive analysis of agricultural feeder connected SPV power plant indicates that the power supply has improved for the feeder during winter and summer months.

Author(s):  
Lars O. Nord ◽  
David R. Schoemaker ◽  
Helmer G. Andersen

A study was initiated to investigate the possibility of significantly reducing the NOx emissions at a power plant utilizing, among other manufacturers, ALSTOM GT11 type gas turbines. This study is limited to one of the GT11 type gas turbines on the site. After the initial study phase, the project moved on to a mechanical implementation stage, followed by thorough testing and tuning. The NOx emissions were to be reduced at all ambient conditions, but particularly at cold conditions (below 0°C) where a NOx reduction of more than 70% was the goal. The geographical location of the power plant means cold ambient conditions for a large part of the year. The mechanical modifications included the addition of Helmholtz damper capacity with an approximately 30% increase in volume for passive thermo-acoustic instability control, significant piping changes to the fuel distribution system in order to change the burner configuration, and installation of manual valves for throttling of the fuel gas to individual burners. Subsequent to the mechanical modifications, significant time was spent on testing and tuning of the unit to achieve the wanted NOx emissions throughout a major part of the load range. The tuning was, in addition to the main focus of the NOx reduction, also focused on exhaust temperature spread, combustion stability, CO emissions, as well as other parameters. The measurement data was acquired through a combination of existing unit instrumentation and specific instrumentation added to aid in the tuning effort. The existing instrumentation readings were polled from the control system. The majority of the added instrumentation was acquired via the FieldPoint system from National Instruments. The ALSTOM AMODIS plant-monitoring system was used for acquisition and analysis of all the data from the various sources. The project was, in the end, a success with low NOx emissions at part load and full load. As a final stage of the project, the CO emissions were also optimized resulting in a nice compromise between the important parameters monitored, namely NOx emissions, CO emissions, combustion stability, and exhaust temperature distribution.


Author(s):  
B. Koti Reddy ◽  
Amit Kumar Singh

<p>Industries with co-generation plants face unprecedented problems due to penetration of renewable energy systems such as solar power on their existing distribution networks. These problems are caused by intermittent solar power. To this end, this paper provides a detailed investigation of the effects due to sudden changes in solar power on an existing industrial distribution network connected to co-generation plants. Moreover, the case studies in this work consider simultaneous operation of a large industry having co-generation captive power plant and large scale solar photovoltaic power plant. The real-time field data for the past three years are used to check the performance of solar photovoltaic power plant, load management, power quality and other concerning issues on the distribution network. In addition to the real-time data, the simulations were performed for the solar power output under different solar irradiance conditions. Moreover, these simulations are used to assess photovoltaic integration effects on a distribution system having a co-generation captive power plant. Finally, this paper put forward photovoltaic integration guidelines to industries and policymakers interested to carry out the integration studies in the future.</p>


2019 ◽  
Vol 6 (1) ◽  
pp. 1641911 ◽  
Author(s):  
Nathphol Khaboot ◽  
Rongrit Chatthaworn ◽  
Apirat Siritaratiwat ◽  
Chayada Surawanitkun ◽  
Pirat Khunkitti ◽  
...  

Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4817 ◽  
Author(s):  
Nathphol Khaboot ◽  
Chitchai Srithapon ◽  
Apirat Siritaratiwat ◽  
Pirat Khunkitti

This work aims to maximize the benefit of the low-voltage (LV) level distribution system with high photovoltaic (PV) penetration by using an optimal installation of a battery energy storage system (BESS) and capacitor. The 41-bus practical distribution system located in Thailand was focused on. The comprehensive objective function regarding the focused system was proposed. The Salp Swarm and Genetic Algorithms were applied to solve the optimization problem. The total net present value (NPV) of utility was performed as a beneficial indicator, and it was determined by the overall costs and benefits of BESS installation and capacitor placement. A comparison of total NPV in the cases of centralized BESS installation, BESS installation with LV capacitor placement, and decentralized BESS installation was indicated. The results showed that all cases of BESS installation could increasingly flatten the load on the transformer; meanwhile, the voltage profile of the system was significantly improved. Optimal installation of centralized BESS simultaneously with LV capacitor placement provides higher NPV than the case with only centralized BESS installation. In particular, the highest NPV was obtained in the case of installing decentralized BESS. The results can be utilized to maximize the benefits of the utility in the distribution system at a high PV penetration level.


Author(s):  
J. Raja ◽  
Nishant Jain ◽  
C. Christober Asir Rajan

<p>in India to meet its future energy demand. This paper emphasis on the performance assessment of grid connected mega-watt solar power plant which is of 23MW and 5MW are located in different geographical location in India. Performance assessment is the finest way to determine the potential of energy generation in solar power plant and it also helps in evaluating the design, operation and maintenance of existing and future solar power plant. The parameters namely calculation of annual energy generated, reference yield, final yield, system losses, cell temperature losses, performance ratio and capacity utilization factor are considered in examining solar power plant performance. In this study experimental measurement of two solar power plant one is located in Gujarat (23MW) and another in Andhra Pradesh (5MW) are compared with the results of estimated model from METEONORM 7.1 and PVSYST V6.67 software tools. Experimental measurement at solar power plant location covers the following measurement for analysis like actual weather condition, daily/hourly irradiance, actual energy yield and compares with capacity utilization factor, performance ratio and temperature corrected performance ratio parameters. The results demonstrated in this paper show the gap between the actual performance of solar power plant and the estimated model from software tool. Performance of solar power plant is satisfactory in comparison with other literature reviews. The actual annual energy generated for 23MW solar power plant was 37991MWh, 18.83% capacity utilization factor, 73.87% performance ratio and 75.33% temperature corrected performance ratio. Similarly, the actual annual energy generated for 5MW solar power plant was 9047.7MWh, 18.41% capacity utilization factor, 80.31% performance ratio and 79.90% temperature corrected performance ratio.</p>


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4887
Author(s):  
Meysam Shamshiri ◽  
Chin Kim Gan ◽  
Junainah Sardi ◽  
Mau Teng Au ◽  
Wei Hown Tee

The recent proliferation of residential solar photovoltaic systems has prompted several technical challenges to the operation of low voltage (LV) distribution networks. More specifically, the mismatch of the solar generation and demand profiles, particularly during the midday when the demand is low and solar generation is high, can lead to network overvoltages and increased network losses. In addition, the solar photovoltaic system is not able to reduce the system’s maximum demand, given the residential LV network would normally have an evening peak when the sun goes down. In this regard, this paper examines two different control strategies in designing the battery energy storage system. One aims to eliminate reverse flow caused by the surplus solar energy and the other aims for peak demand reduction.


2021 ◽  
Vol 11 (8) ◽  
pp. 3598
Author(s):  
Max Domagk ◽  
Irene Yu-Hua Gu ◽  
Jan Meyer ◽  
Peter Schegner

Power quality (PQ) is an increasing concern in the distribution networks of modern industrialized countries. The PQ monitoring activities of distribution system operators (DSO), and consequently the amount of PQ measurement data, continuously increase, and consequently new and automated tools are required for efficient PQ analysis. Time characteristics of PQ parameters (e.g., harmonics) usually show characteristic daily and weekly cycles, mainly caused by the usage behaviour of electric devices. In this paper, methods are proposed for the classification of harmonic emission profiles for typical consumer configurations in public low voltage (LV) networks using a binary decision tree in combination with support vector machines. The performance of the classification was evaluated based on 40 different measurement sites in German public LV grids. This method can support network operators in the identification of consumer configurations and the early detection of fundamental changes in harmonic emission behaviour. This enables, for example, assistance in resolving customer complaints or supporting network planning by managing PQ levels using typical harmonic emission profiles.


2013 ◽  
Vol 133 (4) ◽  
pp. 343-349
Author(s):  
Shunsuke Kawano ◽  
Yasuhiro Hayashi ◽  
Nobuhiko Itaya ◽  
Tomihiro Takano ◽  
Tetsufumi Ono

Sign in / Sign up

Export Citation Format

Share Document