exhaust temperature
Recently Published Documents


TOTAL DOCUMENTS

289
(FIVE YEARS 75)

H-INDEX

17
(FIVE YEARS 3)

Author(s):  
Xudong Shi ◽  
Jinjian Huo ◽  
Jianwei Hu ◽  
Xin Lu

The aero-engine will produce fouling during operation, which will affect the engine performance. On-line cleaning can effectively remove fouling, in order to solve the problem of the poor cleaning effect for aero-engine on-wing cleaning and carry out numerical simulation of the on-line cleaning process. The discrete phase model is used to optimize the particle size and mass flow of the cleaning fluid. The erosion rate and vorticity of the droplets on the blade surface are used as the effect target to simulate and optimize the cleaning process parameters to obtain a better particle size range and the ratio of cleaning fluid to air mass flow. Through the evaluation of the cleaning process parameters of the aero-engine on-wing cleaning test and the analysis of the engine exhaust temperature margin (EGTM) data, it is concluded that the cleaning effect is improved by nearly 40%.


2022 ◽  
Vol 14 (1) ◽  
pp. 168781402110709
Author(s):  
Ming Wen ◽  
Yufeng Li ◽  
Xiaojuan Li ◽  
Jinlong Liu ◽  
Juting Fan

With the increase of the engine intensified degree, mechanical load and thermal load become to the two main factors limiting the engine to intensify. Application of Miller cycle, which can be realized by late intake valve closing (LIVC) and deeper late intake valve closing (DLIVC), has the potential to reduce the effective CR, mechanical load, and thermal load. In this paper, the effects of LIVC and DLIVC on the mechanical load and thermal load of a boosted DI diesel are experimentally compared. Compared to the original base case, the average cylinder temperature of LIVC and DLIVC is reduced by 90 and 52 K. The exhaust temperature of LIVC and DLIVC decreased by 26 and 14 K, and the maximum combustion pressure of LIVC and DLIVC decreased by 1.6 and 9.7 bar. The pumping losses of LIVC and DLIVC are reduced by more than 25%, while the actual cycle power does not decrease due to the late closing of the inlet valve. The fuel consumption rate decreased from 250.1 g/kWh of base case to 240 g/kWh of LIVC, reduced by 4.0%. The indicated thermal efficiency increased from 41.9% of base case to 43.7% and 42.5% of LIVC and DLIVC. Miller loss is only 2.55% with Miller inlet phase.


Author(s):  
Ümit Ağbulut ◽  
Mustafa Aydin ◽  
Mustafa Karagöz ◽  
Emrah Deniz ◽  
Burak Çiftçi

Natural gas, biogas and alcohols are alternative fuels for spark ignition engines which can be used for reducing exhaust emissions and improving performance metrics. At the first stage of the study, a pilot scale biogas system was built, and biogas was produced from a mixture of manure and water called slurry, consisting of 40% cattle manure, 35% water, 17% whey and 8% poultry manure by co-fermentation method. Scrubbing and desulfurization were applied to remove the harmful gasses (CO2, H2S) from the produced biogas in two stages. In the end of the purification process, biogas with a CH4 content of 51%, 57% and 87% was produced. In the second stage, these biogas fuels were used in an SI engine, and their impacts on performance and combustion characteristics were investigated experimentally. A 4-cylinder, 4-stroke, water cooled SI engine with an 11:1 compression ratio was used in the experiments. Tests were conducted at various loads and constant speed. Results showed that daily amount of mean biogas production has reached 1.6 m3/day and biogas methane content has reached 72%. In engine tests, as the methane ratio in biogas increases, cylinder pressure and exhaust temperature values increase and brake specific fuel consumption decreases.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7540
Author(s):  
Seamus P. Kane ◽  
William F. Northrop

A thermochemical recuperation (TCR) reactor was developed and experimentally evaluated with the objective to improve dual-fuel diesel–ammonia compression ignition engines. The novel system simultaneously decomposed ammonia into a hydrogen-containing mixture to allow high diesel fuel replacement ratios and oxidized unburned ammonia emissions in the exhaust, overcoming two key shortcomings of ammonia combustion in engines from the previous literature. In the experimental work, a multi-cylinder compression ignition engine was operated in dual-fuel mode using intake-fumigated ammonia and hydrogen mixtures as the secondary fuel. A full-scale catalytic TCR reactor was constructed and generated the fuel used in the engine experiments. The results show that up to 55% of the total fuel energy was provided by ammonia on a lower heating value basis. Overall engine brake thermal efficiency increased for modes with a high exhaust temperature where ammonia decomposition conversion in the TCR reactor was high but decreased for all other modes due to poor combustion efficiency. Hydrocarbon and soot emissions were shown to increase with the replacement ratio for all modes due to lower combustion temperatures and in-cylinder oxidation processes in the late part of heat release. Engine-out oxides of nitrogen (NOx) emissions decreased with increasing diesel replacement levels for all engine modes. A higher concentration of unburned ammonia was measured in the exhaust with increasing replacement ratios. This unburned ammonia predominantly oxidized to NOx species over the oxidation catalyst used within the TCR reactor. Ammonia substitution thus increased post-TCR reactor ammonia and NOx emissions in this work. The results show, however, that engine-out NH3-to-NOx ratios were suitable for passive selective catalytic reduction, thus demonstrating that both ammonia and NOx from the engine could be readily converted to N2 if the appropriate catalyst were used in the TCR reactor.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7505
Author(s):  
Jinghua Zhao ◽  
Yunfeng Hu ◽  
Fangxi Xie ◽  
Xiaoping Li ◽  
Yao Sun ◽  
...  

To simultaneously achieve high fuel efficiency and low emissions in a diesel hybrid electric vehicle (DHEV), it is necessary to optimize not only power split but also exhaust thermal management for emission aftertreatment systems. However, how to coordinate the power split and the exhaust thermal management to balance fuel economy improvement and emissions reduction remains a formidable challenge. In this paper, a hierarchical model predictive control (MPC) framework is proposed to coordinate the power split and the exhaust thermal management. The method consists of two parts: a fuel and thermal optimized controller (FTOC) combining the rule-based and the optimization-based methods for power split simultaneously considering fuel consumption and exhaust temperature, and a fuel post-injection thermal controller (FPTC) for exhaust thermal management with a separate fuel injection system added to the exhaust pipe. Additionally, preview information about the road grade is introduced to improve the power split by a fuel and thermal on slope forecast optimized controller (FTSFOC). Simulation results show that the hierarchical method (FTOC + FPTC) can reach the optimal exhaust temperature nearly 40 s earlier, and its total fuel consumption is also reduced by 8.9%, as compared to the sequential method under a world light test cycle (WLTC) driving cycle. Moreover, the total fuel consumption of the FTSFOC is reduced by 5.2%, as compared to the fuel and thermal on sensor-information optimized controller (FTSOC) working with real-time road grade information.


Sadhana ◽  
2021 ◽  
Vol 46 (4) ◽  
Author(s):  
Hekun Jia ◽  
Zeyuan Zhou ◽  
Bifeng Yin ◽  
Zhiyuan Liu ◽  
Shuai Wen

2021 ◽  
Vol 2108 (1) ◽  
pp. 012089
Author(s):  
Yun Zhang ◽  
Cichong Liu ◽  
Wanyong Li ◽  
Junye Shi ◽  
Jiangping Chen

Abstract This paper mainly studies the replacement performance of R290 in R22 low temperature heat pump system from the experimental point of view. By comparing the performance differences under different working conditions, it is found that when R22 is directly extracted from the original system and filled with R290, the heat capacity and COP of the system are attenuated, and the compressor discharge temperature and pressure of the R290 system are higher than those of the original R22 system in low temperature environment. Through the analysis of the system components, it can be considered that the main reason for the above phenomenon is that the compressor displacement of the R22 system is too large and does not match the R290 system. Therefore, in order to meet the safety requirements of the system and improve the overall performance of R290 in the low temperature heat pump system at the same time, it is considered to replace the compressor with a smaller displacement which is more matched with R290 in the system. The experimental results show that the compressor displacement optimization of the R290 low temperature heat pump system can effectively reduce the exhaust temperature and pressure of the system and improve the overall performance of the system. The COP of the optimized R290 low temperature heat pump system is 6.5% higher than that of the original R22 system, and the exhaust temperature in the low temperature environment is reduced by 36% to below 80 C.


Author(s):  
Florian Rümmele ◽  
Alexander Susdorf ◽  
Syed Muhammad Salman Haider ◽  
Robert Szolak

AbstractSynthetic fuels and fuel blends like OMEs can contribute to tank-to-wheel CO2 emission savings. At the same time, it is known that these fuels have a lower exhaust temperature compared to conventional diesel. This effect has major impact on the exhaust after-treatment system, particularly in cold start conditions. This paper investigates the light-off behavior of exhaust gases containing OMEs by temperature-programmed oxidation experiments using a state-of-the-art oxidation catalyst. The main side product of catalytic oxidation of OMEs between 100 °C and the oxidation temperature T50, which was around 160 °C, was shown to be formaldehyde. While alkane oxidation, in this case heptane, was little influenced by OME oxidation, the oxidation temperature T50 of CO increases by more than 10 °C by OME addition. Nitrogen monoxide impeded the oxidation of OME in a similar way to the other components investigated. Due to the amount of FA produced and its toxicity, it could be concluded that it is necessary to heat up exhaust after-treatment systems of OME diesel engines even faster than conventional diesel exhaust after-treatment systems. The relatively high reactivity of OME on oxidation catalyst can be used by active thermal management approaches.


2021 ◽  
Vol 8 (2) ◽  
pp. 96
Author(s):  
Hendra Budiono Putra Parapa'

The exhaust temperature parameter is one of the parameters that need to be considered in maintaining the performance of the gas turbine. The purpose of this study is to analyze the effect of changes in exhaust temperature on power output and heat rate. The data used is the actual design data of the M701 gas turbine. This data is used in building the model using the GateCycle software. The modeling simulation results are then validated using the actual design data. To see the impact of changes in exhaust temperature, data from the latest gas turbine performance results are used. This study concludes that changes in exhaust temperature parameters of 1OC have an impact on changes in power output of 0.273% and heat rate of 0.047%.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6473
Author(s):  
Stanislaw Szwaja ◽  
Michal Gruca ◽  
Michal Pyrc ◽  
Romualdas Juknelevičius

Investigation of a new type of fuel for the internal combustion engine, which can be successfully used in both the power generation and the automotive industries, is presented in this article. The proposed fuel is a blend of 75% n-butanol and 25% glycerol. The engine tests conducted with this glycerol–butanol blend were focused on the performance, combustion thermodynamics, and exhaust emissions of a spark-ignition engine. A comparative analysis was performed to find potential similarities and differences in the engine fueled with gasoline 95 and the proposed glycerol–butanol blend. As measured, CO exhaust emissions increased, NOx emissions decreased, and UHC emissions were unchanged for the glycerol–butanol blend when compared to the test with sole gasoline. As regards the engine performance and combustion progress, no significant differences were observed. Exhaust temperature remarkably decreased by 3.4%, which contributed to an increase in the indicated mean effective pressure by approximately 4% compared to gasoline 95. To summarize, the proposed glycerol–butanol blend can be directly used as a replacement for gasoline in internal combustion spark-ignition engines.


Sign in / Sign up

Export Citation Format

Share Document