scholarly journals Method of Selecting Energy-Efficient Parameters of an Electric Asynchronous Traction Motor for Diesel Shunting Locomotives—Case Study on the Example of a Locomotive Series ChME3 (ЧMЭ3, ČME3, ČKD S200)

Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 317
Author(s):  
Valeriy Kuznetsov ◽  
Ewa Kardas-Cinal ◽  
Piotr Gołębiowski ◽  
Borys Liubarskyi ◽  
Magomedemin Gasanov ◽  
...  

One of the assumptions made during the modernization process of diesel shunting locomotives is the replacement of a diesel traction motor with a DC generator with an electric asynchronous traction motor. The article aimed to develop a method of selecting energy-efficient parameters of an asynchronous electric traction motor for diesel shunting locomotives, which will ensure that its operating energy efficiency will be as high as possible. The method was verified on the example of a locomotive series ChME3 (ЧMЭ3, ČME3, ČKD S200). It has been found that using a traction asynchronous electric drive on a ChME3 locomotive, its efficiency increases in comparison with DC electric motors by 3–5% under the long-term operation modes and by 7–10% during locomotive operation with traction at the adhesion limit. Using a new traction gearbox with a higher gear ratio expands the speed range in which the asynchronous traction drive operates with a high-efficiency factor. It is effective to use a traction asynchronous electric drive to modernize ChME3 diesel locomotives in case of their use under the modes requiring the implementation of maximum traction forces at low speeds. A further increase in the efficiency of the traction asynchronous electric drive is possible based on the optimal design of the wheel-motor unit and the asynchronous traction electric drive.

Author(s):  
A. Sulym

The paper deals with the justification of the need to use an asynchronous traction electric drive on the metro rolling stock. The advantages of using an asynchronous traction electric drive in comparison with a DC commutator motor drive are formulated. The characteristics of modern innovative metro rolling stock with asynchronous traction electric drive of domestic and foreign production are analyzed. Aspects of the choice of a variable frequency asynchronous traction electric drive for innovative rolling stock are formulated and the existing typical algorithm of such choice is given. The main reasons for the irrational choice of traction asynchronous electric drive for the metro rolling stock are considered and the consequences of such a choice are analyzed. It is proposed to improve the methodology for selecting a variable frequency traction asynchronous electric drive for the metro rolling stock in terms of such an important operational factor as the specific cost of electrical energy for traction. The rational parameters of the variable frequency asynchronous traction electric drive according to the proposed procedure for the specified characteristics of the metro rolling stock are specified. The reserves of energy savings for the given conditions due to the introduction of an asynchronous traction electric drive with rational parameters on the innovative rolling stock are determined. It is established that the efficiency factor of the asynchronous traction motor significantly affects the specific electric energy consumption for the metro rolling stock traction and operating costs.


Transport ◽  
2009 ◽  
Vol 24 (4) ◽  
pp. 318-324 ◽  
Author(s):  
Lionginas Liudvinavičius ◽  
Leonas Povilas Lingaitis ◽  
Stasys Dailydka ◽  
Virgilijus Jastremskas

The article examines curves controlling asynchronous traction motors increasingly used in locomotive electric drives the main task of which is to create a tractive effort‐speed curve of an ideal locomotive Fk = f(v), including a hyperbolic area the curve of which will create conditions showing that energy created by the diesel engine of diesel locomotives (electric locomotives and in case of electric trains, electricity taken from the contact network) over the entire range of locomotive speed is turned into efficient work. Mechanical power on wheel sets is constant Pk = Fkv = const, the power of the diesel engine is fully used over the entire range of locomotive speed. Tractive effort‐speed curve Fk(v) shows the dependency of locomotive traction power Fk on movement speed v. The article presents theoretical and practical aspects relevant to creating the structure of locomotive electric drive and selecting optimal control that is especially relevant to creating the structure of locomotive electric drive using ATM (asynchronous traction motor) that gains special popularity in traction rolling stock replacing DC traction motors having low reliability. __e frequency modes of asynchronous motor speed regulation are examined. To control ATM, the authors suggest the method of vector control presenting the structural schemes of a locomotive with ATM and control algorithm.


Author(s):  
Igor' Polyuschenkov

The materials on the development of asynchronous electric drive with scalar control are given. The technical solutions associated with the design of software and hardware parts of the microprocessor control system are described. When developed, tools of model-based programming technique are used.


2015 ◽  
Vol 738-739 ◽  
pp. 935-940 ◽  
Author(s):  
Zhen Li ◽  
Pei Xu ◽  
Yu Ping Ouyang ◽  
Shi Lei Lv ◽  
Qiu Fang Dai

In order to reduce operation risk and working intensity in mountainous orchard transportation and to realize optimized control for the mountainous orchard electric-drive monorail transportation system, a mountainous orchard electric-drive monorail transporter control system was designed and developed in this study. The system mainly consists of modules as: manual and remote control, positioning, obstacle avoidance, speed measurement, motor control, electric-magnetic break, and the position limit. The driving speed, current consumption, break control, and battery pack running ability experiments were conducted to test the control system. Results indicated that, the transporter’s driving speed is 0.60~0.58 m/s when it is running on the ground with the load weight from 0 to 100kg. This speed is little affected by the load weight. The transporter’s driving speed is 0.45~0.28 m/s when it is climbing a steep hill with an angle of 39°. That speed is critically affected by the load weight. In further improvements, a shift mechanism will be introduced so that adjustable gear ratio could be achieved thus solve the current overload problem in a full load situation.


Proceedings ◽  
2018 ◽  
Vol 2 (22) ◽  
pp. 1400
Author(s):  
Johannes Schmelcher ◽  
Max Kleine Büning ◽  
Kai Kreisköther ◽  
Dieter Gerling ◽  
Achim Kampker

Energy-efficient electric motors are gathering an increased attention since they are used in electric cars or to reduce operational costs, for instance. Due to their high efficiency, permanent-magnet synchronous motors are used progressively more. However, the need to use rare-earth magnets for such high-efficiency motors is problematic not only in regard to the cost but also in socio-political and environmental aspects. Therefore, an increasing effort has to be put in finding the best design possible. The goals to achieve are, among others, to reduce the amount of rare-earth magnet material but also to increase the efficiency. In the first part of this multipart paper, characteristics of optimization problems in engineering and general methods to solve them are presented. In part two, different approaches to the design optimization problem of electric motors are highlighted. The last part will evaluate the different categories of optimization methods with respect to the criteria: degrees of freedom, computing time and the required user experience. As will be seen, there is a conflict of objectives regarding the criteria mentioned above. Requirements, which a new optimization method has to fulfil in order to solve the conflict of objectives will be presented in this last paper.


Sign in / Sign up

Export Citation Format

Share Document