scholarly journals A Power System Optimal Dispatch Strategy Considering the Flow of Carbon Emissions and Large Consumers

Energies ◽  
2015 ◽  
Vol 8 (9) ◽  
pp. 9087-9106 ◽  
Author(s):  
Jun Yang ◽  
Xin Feng ◽  
Yufei Tang ◽  
Jun Yan ◽  
Haibo He ◽  
...  
2018 ◽  
Vol 8 (9) ◽  
pp. 1453 ◽  
Author(s):  
Huanan Liu ◽  
Dezhi Li ◽  
Yuting Liu ◽  
Mingyu Dong ◽  
Xiangnan Liu ◽  
...  

With the rapid development of industry, more fossil energy is consumed to generate electricity, which increases carbon emissions and aggravates the burden of environmental protection. To reduce carbon emissions, traditional centralized power generation networks are transforming into distributed renewable generation systems. However, the deployment of distributed generation systems can affect power system economy and stability. In this paper, under different time scales, system economy, stability, carbon emissions, and renewable energy fluctuation are comprehensively considered to optimize battery and super-capacitor installation capacity for an off-grid power system. After that, based on the genetic algorithm, this paper shows the optimal system operation strategy under the condition of the theoretical best energy storage capacity. Finally, the theoretical best capacity is tested under different renewable energy volatility rates. The simulation results show that by properly sizing the storage system’s capacity, although the average daily costs of the system can increase by 10%, the system’s carbon emissions also reduce by 42%. Additionally, the system peak valley gap reduces by 23.3%, and the renewable energy output’s fluctuation range and system loss of load probability are successfully limited in an allowable range. Lastly, it has less influence on the theoretical best energy storage capacity if the renewable energy volatility rate can be limited to within 10%.


2015 ◽  
Vol 35 (1Sup) ◽  
pp. 42-49 ◽  
Author(s):  
Luis Fernando Rodríguez-García ◽  
Sandra Milena Pérez-Londoño ◽  
Juan José Mora-Flórez

<span>Current electric power systems have an increasing penetration of electric vehicles, and its effect has to be considered in different <span>studies, such as optimal dispatch or voltage stability, among others. Additionally, considering that power system analysis becomes <span>complex when the number of buses increase, this paper presents a methodology for aggregation of load areas that use a measurement-based load modeling approach based on an evolutionary computational technique and a classical reduction method. This aggregate <span>load area model is proposed to reduce areas that consider electric vehicle (EV) load models. The proposed method provides a static <span>equivalent load model and an equivalent network that can be used to reduce the computational effort required by power system<br /><span>studies. In order to validate the application of the proposed methodology, a 30-bus power system considering several disturbances <span>and levels of penetration of the electric vehicles was used. The results show that the equivalent network model allows the reproduction <span>of different events with an acceptable accuracy when it is compared to the original system behavior.</span></span></span></span></span></span></span><br /><br class="Apple-interchange-newline" /></span>


2021 ◽  
Vol 16 ◽  
pp. 22-40
Author(s):  
George J. Tsekouras ◽  
Fotios D. Kanellos ◽  
Michalis Kontosoros

Shipping industry is reforming and changing fast, as the International Maritime Organization (IMO) works towards air pollution prevention and ship-owners pursue more efficient operation of their ships. Formerly, propulsion and electric load dispatch in ship power system is implemented proportionally with respect to nominal power of prime movers and generators respectively. Additionally, integrated full electric propulsion, optimal real-time dispatch to ship generators and the integration of new systems, such as energy storage systems, shaft generators etc. could have gained a wider application. In this paper the optimal dispatch for ship power system based on Lagrange method is presented comparing the classic and all-electric ship design. The developed method is applied to an ten years old Ro-Ro (roll on / roll off) passenger ship and an analytical sensitivity analysis is occurred out with respect not only to technical characteristics of the ship, such as fuel kind, propulsion chain factors, but also voyage characteristics, such as ship speed, route length etc.


Sign in / Sign up

Export Citation Format

Share Document