scholarly journals Error Minimization in ECG Signal Reconstruction Using Discrete Wavelet Transform

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Saba Javaid ◽  
Sadia Murawwat ◽  
Waqas Latif ◽  
Javaid Aslam ◽  
Muhammad Wasif ◽  
...  

For clinical study and diagnosis, compression of Electro Cardio Gram (ECG) signal is a fundamental step for processing. However, the compression and reconstruction introduce errors in the signal. Therefore, error minimization is crucial before using these signals for analysis and diagnosis. This paper presents an efficient method to minimize the reconstruction error using the adaptive filtering technique. Better reconstruction was achieved based on higher value of Compression Ratio and lesser value of Percent Root mean squared difference. Daubechies Wavelet easily detects the signal spikes while keeping less error rate using Least Mean Squared Error algorithm. However, the percentage value of error appeared to be minimum when using Daubechies Wavelet because of its small coefficients other than Haar and Coiflet Wavelet. Therefore, it was concluded that Daubechies Wavelet should have been used for error minimization in the reconstructed signal.

2014 ◽  
Vol 70 (1) ◽  
pp. 83-110 ◽  
Author(s):  
Didier Henrion ◽  
Jean B. Lasserre ◽  
Martin Mevissen

Author(s):  
R. SHANTHA SELVA KUMARI ◽  
S. BHARATHI ◽  
V. SADASIVAM

Wavelet transform has emerged as a powerful tool for time frequency analysis of complex nonstationary signals such as the electrocardiogram (ECG) signal. In this paper, the design of good wavelets for cardiac signal is discussed from the perspective of orthogonal filter banks. Optimum wavelet for ECG signal is designed and evaluated based on perfect reconstruction conditions and QRS complex detection. The performance is evaluated by using the ECG records from the MIT-BIH arrhythmia database. In the first step, the filter coefficients (optimum wavelet) is designed by reparametrization of filter coefficients. In the second step, ECG signal is decomposed to three levels using the optimum wavelet and reconstructed. From the reconstructed signal, the range of error signal is calculated and it is compared with the performance of other suitable wavelets already available in the literature. The optimum wavelet gives the maximum error range as 10-14–10-11 which is better than that of other wavelets existing in the literature. In the third step, the baseline wandering is removed from the ECG signal for better detection of QRS complex. The optimum wavelet detects all R peaks of all records. That is using optimum wavelet 100% sensitivity and positive predictions are achieved. Based on the performance, it is confirmed that optimum wavelet is more suitable for ECG signal.


2018 ◽  
Vol 28 (01) ◽  
pp. 1950017 ◽  
Author(s):  
Hui Xiong ◽  
Chunhou Zheng ◽  
Jinzhen Liu ◽  
Limei Song

The electrocardiogram (ECG) signal is widely used for diagnosis of heart disorders. However, ECG signal is a kind of weak signal to be interfered with heavy background interferences. Moreover, there are some overlaps between the interference frequency sub-bands and the ECG frequency sub-bands, so it is difficult to inhibit noise in the ECG signal. In this paper, the ECG signal in-band noise de-noising method based on empirical mode decomposition (EMD) is proposed. This method uses random permutation to process intrinsic mode functions (IMFs). It abstracts QRS complexes to separate them from noise so that the clean ECG signal is obtained. The method is validated through simulations on the MIT-BIH Arrhythmia Database and experiments on the measured test data. The results indicate that the proposed method can restrain noise, improve signal noise ratio (SNR) and reduce mean squared error (MSE) effectively.


2001 ◽  
Vol 11 (02) ◽  
pp. 483-495 ◽  
Author(s):  
WILLIAM L. B. CONSTANTINE ◽  
PER G. REINHALL

A novel wavelet-based denoising technique (MODRA) is introduced and shown to be an effective means of denoising in-band contaminated chaotic sequences. MODRA is compared to existing WaveShrink methods and shown to be a more effective denoising technique based on a mean-squared-error statistic for simulated contaminations. For each case, an estimate of the correlation dimension D2 is calculated to quantify the results. As an integral part of MODRA, a best basis cost functional for the maximum overlap discrete wavelet packet transform using Shannon entropy is also introduced.


2019 ◽  
Vol 9 (8) ◽  
pp. 201 ◽  
Author(s):  
Ji ◽  
Ma ◽  
Dong ◽  
Zhang

The classification recognition rate of motor imagery is a key factor to improve the performance of brain–computer interface (BCI). Thus, we propose a feature extraction method based on discrete wavelet transform (DWT), empirical mode decomposition (EMD), and approximate entropy. Firstly, the electroencephalogram (EEG) signal is decomposed into a series of narrow band signals with DWT, then the sub-band signal is decomposed with EMD to get a set of stationary time series, which are called intrinsic mode functions (IMFs). Secondly, the appropriate IMFs for signal reconstruction are selected. Thus, the approximate entropy of the reconstructed signal can be obtained as the corresponding feature vector. Finally, support vector machine (SVM) is used to perform the classification. The proposed method solves the problem of wide frequency band coverage during EMD and further improves the classification accuracy of EEG signal motion imaging,


Sign in / Sign up

Export Citation Format

Share Document