scholarly journals Active Binaural Auditory Perceptual System for a Socially Interactive Humanoid Robot

2022 ◽  
Vol 12 (1) ◽  
pp. 83
Author(s):  
Sohaib Siddique Butt ◽  
Mahnoor Fatima ◽  
Ali Asghar ◽  
Wasif Muhammad

Sound Source Localization (SSL) and gaze shift to the sound source behavior is an integral part of a socially interactive humanoid robot perception system. In noisy and reverberant environments, it is non-trivial to estimate the location of a sound source and accurately shift gaze in its direction. Previous SSL algorithms are deficient in the optimum approximation of distance to audio sources and to accurately detect, interpret, and differentiate the actual sound from comparable sound sources due to challenging acoustic environments. In this article, a learning-based model is presented to achieve noiseless and reverberation-resistant sound source localization in the real-world scenarios. The proposed system utilizes a multi-layered Gaussian Cross-Correlation with Phase Transform (GCC-PHAT) signal processing technique as a baseline for a Generalized Cross Correlation Convolution Neural Network (GCC-CNN) model. The proposed model is integrated with an efficient rotation algorithm to predict and orient toward the sound source. The performance of the proposed method is compared with the state-of-art deep network-based sound source localization methods. The findings of the proposed method outperform the existing neural network-based approaches by achieving the highest accuracy of 96.21% for an active binaural auditory perceptual system.

2013 ◽  
Vol E96.D (10) ◽  
pp. 2257-2265 ◽  
Author(s):  
Hirofumi TSUZUKI ◽  
Mauricio KUGLER ◽  
Susumu KUROYANAGI ◽  
Akira IWATA

2018 ◽  
Vol 65 (8) ◽  
pp. 6403-6413 ◽  
Author(s):  
Yingxiang Sun ◽  
Jiajia Chen ◽  
Chau Yuen ◽  
Susanto Rahardja

Author(s):  
Alif Bin Abdul Qayyum ◽  
K. M. Naimul Hassan ◽  
Adrita Anika ◽  
Md. Farhan Shadiq ◽  
Md Mushfiqur Rahman ◽  
...  

Abstract Drone-embedded sound source localization (SSL) has interesting application perspective in challenging search and rescue scenarios due to bad lighting conditions or occlusions. However, the problem gets complicated by severe drone ego-noise that may result in negative signal-to-noise ratios in the recorded microphone signals. In this paper, we present our work on drone-embedded SSL using recordings from an 8-channel cube-shaped microphone array embedded in an unmanned aerial vehicle (UAV). We use angular spectrum-based TDOA (time difference of arrival) estimation methods such as generalized cross-correlation phase-transform (GCC-PHAT), minimum-variance-distortion-less-response (MVDR) as baseline, which are state-of-the-art techniques for SSL. Though we improve the baseline method by reducing ego-noise using speed correlated harmonics cancellation (SCHC) technique, our main focus is to utilize deep learning techniques to solve this challenging problem. Here, we propose an end-to-end deep learning model, called DOANet, for SSL. DOANet is based on a one-dimensional dilated convolutional neural network that computes the azimuth and elevation angles of the target sound source from the raw audio signal. The advantage of using DOANet is that it does not require any hand-crafted audio features or ego-noise reduction for DOA estimation. We then evaluate the SSL performance using the proposed and baseline methods and find that the DOANet shows promising results compared to both the angular spectrum methods with and without SCHC. To evaluate the different methods, we also introduce a well-known parameter—area under the curve (AUC) of cumulative histogram plots of angular deviations—as a performance indicator which, to our knowledge, has not been used as a performance indicator for this sort of problem before.


Sign in / Sign up

Export Citation Format

Share Document