scholarly journals Short Legacy Effects of Growing Season Nitrogen Addition and Reduced Precipitation alter Soil Respiration during Nongrowing Season

Forests ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 358
Author(s):  
Guoyong Yan ◽  
Yajuan Xing ◽  
Qinggui Wang ◽  
Changcheng Mu

The short legacy effects of growing season nitrogen (N) addition and reduced precipitation on nongrowing season soil respiration (Rs), autotrophic respiration (Ra), and heterotrophic respiration (Rh) are still unclear. Therefore, a field manipulative experiment to determine the responses of nongrowing season Rs and its components to growing season N addition and reduced precipitation was conducted in a temperate forest. The results show that growing season N addition and reduced precipitation significantly increased nongrowing season Rs by regulating the response of Ra and Rh. The combination of N addition and reduced precipitation also showed a much stronger effect on Rs and its components, but the magnitude and direction largely depended on the snowpack thickness. The effects of growing season N addition and reduced precipitation on nongrowing season Rs and its components were mediated by different sampling periods. N addition significantly decreased Rs by decreasing Rh in early winter and significantly increased Rs by increasing Ra in deep winter and late winter. All treatments decreased temperature sensitivity (Q10) of Rs and Rh. Our findings contribute to a better understanding of how nongrowing season Rs and its components will change under growing season N addition and reduced precipitation and could improve predictions of the future states of the soil C cycle in response to climate change.

2013 ◽  
Vol 10 (1) ◽  
pp. 1451-1481 ◽  
Author(s):  
X. Lu ◽  
F. S. Gilliam ◽  
G. Yu ◽  
L. Li ◽  
Q. Mao ◽  
...  

Abstract. Dissolved organic carbon (DOC) plays a critical role in the carbon (C) cycle of forest soils, and has been recently connected with global increases in nitrogen (N) deposition. Most studies on effects of elevated N deposition on DOC have been carried out in N-limited temperate regions, with far fewer data available from N-rich ecosystems, especially in the context of chronically elevated N deposition. Furthermore, mechanisms for excess N-induced changes of DOC dynamics have been suggested to be different between the two kinds of ecosystems, because of the different ecosystem N status. The purpose of this study was to experimentally examine how long-term N addition affects DOC dynamics below the primary rooting zones (the upper 20 cm soils) in typically N-rich lowland tropical forests. We have a primary assumption that long-term continuous N addition minimally affects DOC concentrations and effluxes in N-rich tropical forests. Experimental N addition was administered at the following levels: 0, 50, 100 and 150 kg N ha−1 yr−1, respectively. Results showed that seven years of N addition significantly decreased DOC concentrations in soil solution, and chemo-physical controls (solution acidity change and soil sorption) rather than biological controls may mainly account for the decreases, in contrast to other forests. We further found that N addition greatly decreased annual DOC effluxes from the primary rooting zone and increased water-extractable DOC in soils. Our results suggest that long-term N deposition could increase soil C sequestration in the upper soils by decreasing DOC efflux from that layer in N-rich ecosystems, a novel mechanism for continued accumulation of soil C in old-growth forests.


2013 ◽  
Vol 10 (6) ◽  
pp. 3931-3941 ◽  
Author(s):  
X. Lu ◽  
F. S. Gilliam ◽  
G. Yu ◽  
L. Li ◽  
Q. Mao ◽  
...  

Abstract. Dissolved organic carbon (DOC) plays a critical role in the carbon (C) cycle of forest soils, and has been recently connected with global increases in nitrogen (N) deposition. Most studies on effects of elevated N deposition on DOC have been carried out in N-limited temperate regions, with far fewer data available from N-rich ecosystems, especially in the context of chronically elevated N deposition. Furthermore, mechanisms for excess N-induced changes of DOC dynamics have been suggested to be different between the two kinds of ecosystems, because of the different ecosystem N status. The purpose of this study was to experimentally examine how long-term N addition affects DOC dynamics below the primary rooting zones (the upper 20 cm soils) in typically N-rich lowland tropical forests. We have a primary assumption that long-term continuous N addition minimally affects DOC concentrations and effluxes in N-rich tropical forests. Experimental N addition was administered at the following levels: 0, 50, 100 and 150 kg N ha−1 yr−1, respectively. Results showed that seven years of N addition significantly decreased DOC concentrations in soil solution, and chemo-physical controls (solution acidity change and soil sorption) rather than biological controls may mainly account for the decreases, in contrast to other forests. We further found that N addition greatly decreased annual DOC effluxes from the primary rooting zone and increased water-extractable DOC in soils. Our results suggest that long-term N deposition could increase soil C sequestration in the upper soils by decreasing DOC efflux from that layer in N-rich ecosystems, a novel mechanism for continued accumulation of soil C in old-growth forests.


2020 ◽  
Author(s):  
Guancheng Liu ◽  
Tong Liu ◽  
Guoyong Yan ◽  
Lei Wang ◽  
Xiaochun Wang ◽  
...  

Abstract Background Atmospheric nitrogen (N) deposition in boreal forest ecosystems increased gradually with the development of industry and agriculture, but the effects of N input on soil CO2 fluxes in these ecosystems were rarely reported in previous studies. To evaluate the effect of N addition on soil respiration is of great significance for understanding the distribution of soil carbon (C) on the N gradient in forest ecosystems.Results In this study, four treatment levels of N addition (0, 25, 50, 75 kg N ha− 1 yr− 1) were applied to natural Larix gmelinii forest in Greater Khingan Mountains of northeast China. We focused mainly on the dynamics of soil respiration (Rs), heterotrophic respiration (Rh), autotrophic respiration (Ra), microbial biomass C and N (MBC and MBN) and fine root biomass (FRB) in a growing season. We found that low N addition significant increased Rs, Rh and Ra, but with the increase of N addition, the promotion effect was gradually weakened. Medium N increased the temperature sensitivity (Q10) of Rs and Rh components, while medium N and high N significantly reduced the Q10 of Ra. Ra was positively correlated with FRB; Rh was positively correlated with soil MBC and MBN; and RS was probably driven by Ra from May to July, while by Rh in August and September.Conclusions Long-term N addition alleviated microbial N limitation, promoted soil respiration and accelerated soil C and N cycle in boreal forest ecosystems.


2011 ◽  
Vol 8 (10) ◽  
pp. 3077-3092 ◽  
Author(s):  
L. Taneva ◽  
M. A. Gonzalez-Meler

Abstract. Soil respiration (RS) is a major flux in the global carbon (C) cycle. Responses of RS to changing environmental conditions may exert a strong control on the residence time of C in terrestrial ecosystems and in turn influence the atmospheric concentration of greenhouse gases. Soil respiration consists of several components oxidizing soil C from different pools, age and chemistry. The mechanisms underlying the temporal variability of RS components are poorly understood. In this study, we used the long-term whole-ecosystem 13C tracer at the Duke Forest Free Air CO2 Enrichment site to separate forest RS into its autotrophic (RR) and heterotrophic components (RH). The contribution of RH to RS was further partitioned into litter decomposition (RL), and decomposition of soil organic matter (RSOM) of two age classes – up to 8 yr old and SOM older than 8 yr. Soil respiration was generally dominated by RSOM during the growing season (44% of daytime RS), especially at night. The contribution of heterotrophic respiration (RSOM and RL) to RS was not constant, indicating that the seasonal variability in RR alone cannot explain seasonal variation in RS. Although there was no diurnal variability in RS, there were significant compensatory differences in the contribution of individual RS components to daytime and nighttime rates. The average contribution of RSOM to RS was greater at night (54%) than during the day (44%). The average contribution of RR to total RS was ~30% during the day and ~34% during the night. In contrast, RL constituted 26% of RS during the day and only 12% at night. About 95% of the decomposition of soil C older than 8 yr (Rpre-tr) originated from RSOM and showed more pronounced and consistent diurnal variability than any other RS component; nighttime rates were on average 29% higher than daytime rates. In contrast, the decomposition of more recent, post-treatment C (Rpre-tr) did not vary diurnally. None of the diurnal variations in components of RH could be explained by only temperature and moisture variations. Our results indicate that the variation observed in the components of RS is the result of complex interaction between dominant biotic controls (e.g. plant activity, mineralization kinetics, competition for substrates) over abiotic controls (temperature, moisture). The interactions and controls among roots and other soil organisms that utilize C of different chemistry, accessibility and ages, results in the overall soil CO2 efflux. Therefore understanding the controls on the components of RS is necessary to elucidate the influence of ecosystem respiration on atmospheric C-pools at different time scales.


2018 ◽  
Vol 32 (7) ◽  
pp. 1890-1901 ◽  
Author(s):  
Jianjun Li ◽  
Yin Huang ◽  
Fengwei Xu ◽  
Liji Wu ◽  
Dima Chen ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jing Zhang ◽  
Xiaoan Zuo ◽  
Xueyong Zhao ◽  
Jianxia Ma ◽  
Eduardo Medina-Roldán

Abstract Extreme climate events and nitrogen (N) deposition are increasingly affecting the structure and function of terrestrial ecosystems. However, the response of plant biomass to variations to these global change drivers is still unclear in semi-arid regions, especially in degraded sandy grasslands. In this study, a manipulative field experiment run over two years (from 2017 to 2018) was conducted to examine the effect of rainfall alteration and nitrogen addition on biomass allocation of annuals and perennial plants in Horqin sandy grassland, Northern China. Our experiment simulated extreme rainfall and extreme drought (a 60% reduction or increment in the growing season rainfall with respect to a control background) and N addition (20 g/m2) during the growing seasons. We found that the sufficient rainfall during late July and August compensates for biomass losses caused by insufficient water in May and June. When rainfall distribution is relatively uniform during the growing season, extreme rainfall increased aboveground biomass (AGB) and belowground biomass (BGB) of annuals, while extreme drought reduced AGB and BGB of perennials. Rainfall alteration had no significant impacts on the root-shoot ratio (R/S) of sandy grassland plants, while N addition reduced R/S of grassland species when there was sufficient rainfall in the early growing season. The biomass of annuals was more sensitive to rainfall alteration and nitrogen addition than the biomass of perennials. Our findings emphasize the importance of monthly rainfall distribution patterns during the growing season, which not only directly affect the growth and development of grassland plants, but also affect the nitrogen availability of grassland plants.


2022 ◽  
Vol 68 (No. 1) ◽  
pp. 49-58
Author(s):  
Boli Yi ◽  
Fan Lu ◽  
Zhao-Jun Bu

Peatlands, as important global nitrogen (N) pools, are potential sources of nitrous oxide (N<sub>2</sub>O) emissions. We measured N<sub>2</sub>O flux dynamics in Hani peatland in a growing season with simulating warming and N addition for 12 years in the Changbai Mountains, Northeastern China, by using static chamber-gas chromatography. We hypothesised that warming and N addition would accelerate N<sub>2</sub>O emissions from the peatland. In a growing season, the peatland under natural conditions showed near-zero N<sub>2</sub>O fluxes and warming increased N<sub>2</sub>O emissions but N addition greatly increased N<sub>2</sub>O absorption compared with control. There was no interaction between warming and N addition on N<sub>2</sub>O fluxes. Pearson correlation analysis showed that water table depth was one of the main environmental factors affecting N<sub>2</sub>O fluxes and a positive relationship between them was observed. Our study suggests that the N<sub>2</sub>O source function in natural temperate peatlands maybe not be so significant as we expected before; warming can increase N<sub>2</sub>O emissions, but a high dose of N input may turn temperate peatlands to be strong sinks of N<sub>2</sub>O, and global change including warming and nitrogen deposition can alter N<sub>2</sub>O fluxes via its indirect effect on hydrology and vegetation in peatlands.  


2019 ◽  
Vol 271 ◽  
pp. 336-345 ◽  
Author(s):  
Fei Chen ◽  
Guoyong Yan ◽  
Yajuan Xing ◽  
Junhui Zhang ◽  
Qinggui Wang ◽  
...  

2006 ◽  
Vol 86 (Special Issue) ◽  
pp. 187-202 ◽  
Author(s):  
Guy R. Larocque ◽  
Robert Boutin, David Paré ◽  
Gilles Robitaille ◽  
Valérie Lacerte

The predictive capacity of process-based models on the carbon (C) cycle in forest ecosystems is limited by the lack of knowledge on the processes involved. Thus, a better understanding of the C cycle may contribute to the development of process-based models that better represent the processes in C cycle models. A new soil C model was developed to predict the effect of an increase in the temperature regime on soil C dynamics and pools in sugar maple (Acer saccharum Marsh.), balsam fir [Abies balsamea (L.) Mill.] and black spruce [Picea mariana (Mill.) B.S.P.] forest types in Eastern Canada. Background information to calibrate the model originated from the experimental sites of the ECOLEAP project as well as from a companion study on laboratory soil incubation. Different types of litter were considered in the model: foliage, twigs, understory species, other fine detritus and fine roots. A cohort approach was used to model litter mineralization over time. The soil organic C in the organic (F and H) and mineral layers (0–20 cm) was partitioned into active, slow and passive pools and the rates of C transfer among the different pools and the amount of CO2 respired were modelled. For each forest type, there was a synchrony of response of the C pools to soil temperature variation. The results of the simulations indicated that steady state conditions were obtained under current temperature conditions. When mean annual soil temperatures were gradually increased, the litter and active and slow C pools decreased substantially, but the passive pools were minimally affected. The increase in soil respiration resulting from a gradual increase in temperature was not pronounced in comparison to changes in mineralization rates. An increase in litter production during the same period could contribute to reducing net C losses. Key words: Soil organic matter, litter, soil respiration, climate change


Sign in / Sign up

Export Citation Format

Share Document