scholarly journals Effects of rainfall manipulation and nitrogen addition on plant biomass allocation in a semiarid sandy grassland

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jing Zhang ◽  
Xiaoan Zuo ◽  
Xueyong Zhao ◽  
Jianxia Ma ◽  
Eduardo Medina-Roldán

Abstract Extreme climate events and nitrogen (N) deposition are increasingly affecting the structure and function of terrestrial ecosystems. However, the response of plant biomass to variations to these global change drivers is still unclear in semi-arid regions, especially in degraded sandy grasslands. In this study, a manipulative field experiment run over two years (from 2017 to 2018) was conducted to examine the effect of rainfall alteration and nitrogen addition on biomass allocation of annuals and perennial plants in Horqin sandy grassland, Northern China. Our experiment simulated extreme rainfall and extreme drought (a 60% reduction or increment in the growing season rainfall with respect to a control background) and N addition (20 g/m2) during the growing seasons. We found that the sufficient rainfall during late July and August compensates for biomass losses caused by insufficient water in May and June. When rainfall distribution is relatively uniform during the growing season, extreme rainfall increased aboveground biomass (AGB) and belowground biomass (BGB) of annuals, while extreme drought reduced AGB and BGB of perennials. Rainfall alteration had no significant impacts on the root-shoot ratio (R/S) of sandy grassland plants, while N addition reduced R/S of grassland species when there was sufficient rainfall in the early growing season. The biomass of annuals was more sensitive to rainfall alteration and nitrogen addition than the biomass of perennials. Our findings emphasize the importance of monthly rainfall distribution patterns during the growing season, which not only directly affect the growth and development of grassland plants, but also affect the nitrogen availability of grassland plants.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jing Zhang ◽  
Xiaoan Zuo ◽  
Xueyong Zhao ◽  
Jianxia Ma ◽  
Eduardo Medina-Roldán

An amendment to this paper has been published and can be accessed via a link at the top of the paper.


2017 ◽  
Vol 68 (2) ◽  
pp. 212-220 ◽  
Author(s):  
D. Wang ◽  
H. L. He ◽  
Q. Gao ◽  
C. Z. Zhao ◽  
W. Q. Zhao ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Chunli Li ◽  
Yonghui Li ◽  
Xinwei Li ◽  
Li Ma ◽  
Yuanming Xiao ◽  
...  

Climate, land-use changes, and nitrogen (N) deposition strongly impact plant primary productivity, particularly in alpine grassland ecosystems. In this study, the differential responses of plant community primary productivity to N and phosphorus (P) nutrient application were investigated in the natural (NG) and “Grain for Green” restored (RG) alpine grasslands by a continuous 3-year experiment in the Qinghai Lake Basin. N addition only significantly promoted plant aboveground biomass (AGB) by 42% and had no significant effect on belowground biomass (BGB) and total biomass (TB) in NG. In comparison with NG, N addition elevated AGB and BGB concurrently in RG by 138% and 24%, respectively, which further significantly increased TB by 41% in RG. Meanwhile, N addition significantly decreased BGB and the AGB ratio (R/S) both in NG and RG. Compared with N addition, P addition did not perform an evident effect on plant biomass parameters. Additionally, AGB was merely negatively influenced by growing season temperatures (GST) under the N addition treatment in NG. AGB was negatively associated with GST but positively related to growing season precipitation (GSP) in RG. By contrast, changes in the R/S ratio in RG were positively correlated with GST and negatively related to GSP. In sum, the results revealed that plant community biomass exhibited convergent (AGB and R/S) and divergent (BGB and TB) responses to N addition between NG and RG. In addition, the outcomes suggested that climate warming would enhance plant biomass allocation to belowground under ongoing N deposition, and indicated the significance of precipitation for plant growth and AGB accumulation in this restored alpine grassland ecosystem.


2022 ◽  
Vol 68 (No. 1) ◽  
pp. 49-58
Author(s):  
Boli Yi ◽  
Fan Lu ◽  
Zhao-Jun Bu

Peatlands, as important global nitrogen (N) pools, are potential sources of nitrous oxide (N<sub>2</sub>O) emissions. We measured N<sub>2</sub>O flux dynamics in Hani peatland in a growing season with simulating warming and N addition for 12 years in the Changbai Mountains, Northeastern China, by using static chamber-gas chromatography. We hypothesised that warming and N addition would accelerate N<sub>2</sub>O emissions from the peatland. In a growing season, the peatland under natural conditions showed near-zero N<sub>2</sub>O fluxes and warming increased N<sub>2</sub>O emissions but N addition greatly increased N<sub>2</sub>O absorption compared with control. There was no interaction between warming and N addition on N<sub>2</sub>O fluxes. Pearson correlation analysis showed that water table depth was one of the main environmental factors affecting N<sub>2</sub>O fluxes and a positive relationship between them was observed. Our study suggests that the N<sub>2</sub>O source function in natural temperate peatlands maybe not be so significant as we expected before; warming can increase N<sub>2</sub>O emissions, but a high dose of N input may turn temperate peatlands to be strong sinks of N<sub>2</sub>O, and global change including warming and nitrogen deposition can alter N<sub>2</sub>O fluxes via its indirect effect on hydrology and vegetation in peatlands.  


Forests ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 358
Author(s):  
Guoyong Yan ◽  
Yajuan Xing ◽  
Qinggui Wang ◽  
Changcheng Mu

The short legacy effects of growing season nitrogen (N) addition and reduced precipitation on nongrowing season soil respiration (Rs), autotrophic respiration (Ra), and heterotrophic respiration (Rh) are still unclear. Therefore, a field manipulative experiment to determine the responses of nongrowing season Rs and its components to growing season N addition and reduced precipitation was conducted in a temperate forest. The results show that growing season N addition and reduced precipitation significantly increased nongrowing season Rs by regulating the response of Ra and Rh. The combination of N addition and reduced precipitation also showed a much stronger effect on Rs and its components, but the magnitude and direction largely depended on the snowpack thickness. The effects of growing season N addition and reduced precipitation on nongrowing season Rs and its components were mediated by different sampling periods. N addition significantly decreased Rs by decreasing Rh in early winter and significantly increased Rs by increasing Ra in deep winter and late winter. All treatments decreased temperature sensitivity (Q10) of Rs and Rh. Our findings contribute to a better understanding of how nongrowing season Rs and its components will change under growing season N addition and reduced precipitation and could improve predictions of the future states of the soil C cycle in response to climate change.


2020 ◽  
Author(s):  
Kai Yue ◽  
Dario A Fornara ◽  
Wang Li ◽  
Xiangyin Ni ◽  
Yan Peng ◽  
...  

Abstract Aims Biomass allocation to different organs is a fundamental plant ecophysiological process to better respond to changing environments; yet, it remains poorly understood how patterns of biomass allocation respond to nitrogen (N) additions across terrestrial ecosystems worldwide. Methods We conducted a meta-analysis using 5474 pairwise observations from 333 articles to assess how N addition affected plant biomass and biomass allocation among different organs. We also tested the “ratio-based optimal partitioning” vs. the “isometric allocation” hypotheses to explain potential N addition effects on biomass allocation. Important findings We found that (1) N addition significantly increased whole plant biomass and the biomass of different organs, but decreased root:shoot ratio (RS) and root mass fraction (RMF) while no effects of N addition on leaf mass fraction (LMF) and stem mass fraction (SMF) at the global scale; (2) the effects of N addition on ratio-based biomass allocation were mediated by individual or interactive effects of moderator variables such as experimental conditions, plant functional types, latitudes, and rates of N addition; and (3) N addition did not affect allometric relationships among different organs, suggesting that decreases in RS and RMF may result from isometric allocation patterns following increases in whole plant biomass. Despite alteration of ratio-based biomass allocation between root and shoot by N addition, the unaffected allometric scaling relationships among different organs (including root vs. shoot) suggest that plant biomass allocation patterns are more appropriately explained by the isometric allocation hypothesis rather than the optimal partitioning hypothesis. Our findings contribute to better understand N-induced effects on allometric relationships of terrestrial plants, and suggest that these ecophysiological responses should be incorporated into models that aim to predict how terrestrial ecosystems may respond to enhanced N deposition under future global change scenarios.


2020 ◽  
Vol 13 (6) ◽  
pp. 676-682
Author(s):  
Xi Luo ◽  
Yi Zheng ◽  
Xiaohong Xu ◽  
Rui Xiao ◽  
Hui Guo

Abstract Aims Global change factors (e.g. warming and nitrogen deposition) may influence biological invasions, but how these factors may influence the performance of invasive species and further mediate the interactions with native competitors remain still unknown. Methods Here, we conducted a 5-month greenhouse experiment to examine the effects of warming (using open-top chambers, +0.62°C) and N addition (adding NH4NO3 at a rate of 4.2 g m−2) on the performance of the native and invasive populations of an invasive species Plantago virginica in competition with a native Plantago asiatica. Important Findings Under warming treatment and its interaction with nitrogen addition treatment (W × N), invasive and native populations of P. virginica had different biomass allocation strategies to compete with native competitor P. asiatica. Native population of P. virginica (PV-Na) increased more below-ground biomass, whereas those from the invasive population (PV-In) increased more above-ground biomass. We also found that invasive species P. virginica had stronger responses to warming and N addition than the native species P. asiatica. The competitive ability of the invasive plants was significantly reduced by warming which indicated that the invasive plant were much stronger sensitivity to elevated temperature than native plant. Similarly, N addition and W × N reduced the competitive response of PV-In in below-ground biomass, but increased the competitive response of PV-Na in above-ground and total biomass when they grew with the P. asiatica. The results show that P. virginica have occurred differential biomass allocation strategies during its invasions and invasive population exhibit flexible competition ability to adapt to environmental changes (especially warming). These findings may potentially help to predict plant invasions and make management strategies in a world with changing climate.


Ecology ◽  
2021 ◽  
Author(s):  
Bo Meng ◽  
Junqin Li ◽  
Gregory E. Maurer ◽  
Shangzhi Zhong ◽  
Yuan Yao ◽  
...  

1997 ◽  
Vol 75 (6) ◽  
pp. 902-915 ◽  
Author(s):  
Gilles Houle

Coastal dunes are very dynamic systems, particularly where the coast is rising as a result of isostatic rebound. In those environments, succession proceeds from plants highly tolerant to sand accumulation, salt spray, and low nutrient availability to less disturbance-tolerant and stress-tolerant, more nutrient-demanding, and supposedly more competitive species. In the subarctic, the regional climate exacerbates the stresses imposed by local abiotic conditions on the dunes. I hypothesized that facilitation would be particularly significant on the foredune of subarctic coastal dune systems because of intense stresses (local and regional) and frequent disturbance in the form of sand deposition. Belowground and aboveground plant biomass was sampled at three different periods during the 1990 growing season along transects perpendicular to the shoreline on a coastal dune system in subarctic Quebec (Canada). The three herbaceous perennials found on the foredune (Honckenya peploides, Elymus mollis, and Lathyrus japonicus) were segregated in time during the growing season and in space along the topographical gradient. The biomass of Honckenya, the first species encountered as one progresses from the upper part of the beach towards the foredune ridge, was not correlated to substrate physicochemistry. However, the biomass of Elymus and that of Lathyrus, the next two species to appear along the flank of the foredune, were related to pH, Mg, Na, and Cl (negatively), and to P and Ca (positively). These results suggest variable linkages between substrate physicochemistry and plant species along the foredune, possibly in relation to species-specific tolerance for abiotic conditions and requirements for substrate resources or to microscale influence of the plants themselves on substrate physicochemistry. Removal experiments carried out over 2 years revealed only one significant unidirectional interaction between these three species along the topographical gradient, and little plant control over abiotic variables (e.g., soil temperature, wind velocity, and photosynthetically active radiation). Early primary succession on subarctic coastal dunes (and elsewhere) appears to be under the control of strong limiting abiotic conditions. As plants slowly gain more control over the physical environment, interspecific interactions (positive and negative) may become more significant. Key words: Elymus mollis, facilitation, Honckenya peploides, inhibition, Lathyrus japonicus, removal experiment, succession, tolerance.


Sign in / Sign up

Export Citation Format

Share Document