scholarly journals Patterns of Diversity in the Symbiotic Mite Assemblage of the Mountain Pine Beetle, Dendroctonus Ponderosae Hopkins

Forests ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1102
Author(s):  
Sneha Vissa ◽  
Javier E. Mercado ◽  
Danielle Malesky ◽  
Derek A. Uhey ◽  
Boyd A. Mori ◽  
...  

The mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Scolytinae), is an economically important bark beetle species with a wide geographic range spanning from the southwestern United States into northern Canada. This beetle causes extensive tree mortality to 13 pine species. Mites (Acari) are common and abundant symbionts of mountain beetles that may influence their fitness through positive and negative interactions. We present a unique assessment of the mite associates of mountain pine beetles using measures of alpha and beta diversity. We sampled phoretic mites from five beetle populations: Arizona, Colorado, South Dakota, Utah (USA), and Alberta (Canada) that varied in host tree species, local climate, and beetle population level. We collected 4848 mites from 8 genera and 12 species. Fifty to seventy percent of beetles carried mites in flight with the highest mite loads occurring in middle and southern populations; decreasing in northern populations. Mite assemblages (i.e., both richness and composition) varied along a south to north latitudinal gradient and were driven by species turnover (i.e., species replacement). Differences in mite composition increased with distance between populations. We discuss climatic variation, environmental filtering, and host tree differences as factors that could affect differences in mite composition between beetle populations and discuss implications for functional shifts. Our results could represent a model for estimating diversity patterns of mite symbionts associated with other major insect pests in coniferous forest systems.

2020 ◽  
Vol 46 (5) ◽  
pp. 333-346
Author(s):  
Joseph Doccola ◽  
Sheri Smith ◽  
Joseph Fischer ◽  
Brian Strom

The protection of high-value trees against bark beetles and the development of alternatives to bole sprays is a priority for the tree manager. The objective of this study was to evaluate stem-injected TREE-äge® (emamectin benzoate [EB]) as a protective treatment for western white pines (Pinus monticola Dougl. ex D. Don) against mountain pine beetle (MPB, Dendroctonus ponderosae Hopkins). Treatment efficacy was based solely on tree mortality as per Shea protocols (i.e., ≥ 60% check vs. ≤ 20% treated tree mortality). Our first experiment was installed in 2007 and included trees stem-injected with TREE-äge and untreated controls. Bole application of S-(-)-verbenone and green leaf volatile (GLV) blend was included for observational comparison. Pressure from MPB was heavy, as indicated by the number and timing of control tree mortality (90%). Strip attacks by MPB in TREE-äge trees indicated that the impacts of EB, and by inference its distribution, were inconsistent. In 2009, the injection protocol was revised to improve EB distribution in the phloem via closer injection points. In the 2009 TREE-äge-treated trees, adult beetle mining stopped when they contacted phloem and was insufficient to cause tree death by girdling. Blue-stain fungi colonized the sapwood of trees in both studies. Isolates from autopsied trees treated with TREE-äge alone were subsequently identified as Grosmannia clavigera and Leptographium longiclavatum (Ophiostomatales: Ascomycota), species that can incite tree mortality. In 2013, we revised our protocol to include GLV plus verbenone or propiconazole with TREE-äge, wherein these treatments proved effective in protecting trees against MPB and their associated pathogenic fungi.


Insects ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 112 ◽  
Author(s):  
José F. Negrón

The mountain pine beetle (MPB) (Dendroctonus ponderosae) is a bark beetle that attacks and kills ponderosa pine (Pinus ponderosa), among other pine species throughout the western conifer forests of the United States and Canada, particularly in dense stands comprising large trees. There is information on the stand conditions that the insect prefers. However, there is a paucity of information on how small-scale variation in stand conditions influences the distribution of tree mortality within a stand. I examined the small-scale distribution of ponderosa pine basal area pre- and post a mountain pine beetle infestation, and used geostatistical modeling to relate the spatial distribution of the host to subsequent MPB-caused tree mortality. Results indicated increased mortality in the denser parts of the stand. Previous land management has changed historically open low-elevation ponderosa pine stands with aggregated tree distribution into dense stands that are susceptible to mountain pine beetles and intense fires. Current restoration efforts are aimed at reducing tree density and leaving clumps of trees, which are more similar to historical conditions. The residual clumps, however, may be susceptible to mountain pine beetle populations. Land managers will want to be cognizant of how mountain pine beetles will respond to restoration treatments, so as to prevent and mitigate tree mortality that could negate restoration efforts.


2013 ◽  
Vol 145 (1) ◽  
pp. 12-19 ◽  
Author(s):  
K.P. Bleiker ◽  
R.J. Heron ◽  
E.C. Braithwaite ◽  
G.D. Smith

AbstractThe mountain pine beetleDendroctonus ponderosaeHopkins (Coleoptera: Curculionidae) kills its hosts by attackingen masseand overwhelming tree defences. Young adult beetles completing development under the bark may have the opportunity to mate with siblings or with brood from adjacent galleries prior to emerging from the natal host tree. We investigated the incidence of preemergence mating among female beetles at two locations in the recently expanded range of the insect in northern Alberta, Canada. Female beetles emerging from under the bark late in the emergence period were more likely to be mated upon emergence than beetles that emerged earlier. Delaying emergence of brood adults once they were at the teneral adult stage had little effect on the incidence of preemergence mating. The frequency of preemergence mating varied from 3–12% among female beetles. This is higher than the 1–2% reported in other studies within the historic range of the mountain pine beetle. Reasons for these differences are discussed.


2012 ◽  
Vol 21 (12) ◽  
pp. 2931-2948 ◽  
Author(s):  
G. D. N. GAYATHRI SAMARASEKERA ◽  
NICHOLAS V. BARTELL ◽  
B. STAFFAN LINDGREN ◽  
JANICE E. K. COOKE ◽  
COREY S. DAVIS ◽  
...  

1989 ◽  
Vol 121 (6) ◽  
pp. 521-523 ◽  
Author(s):  
A.J. Stock ◽  
R.A. Gorley

The mountain pine beetle, Dendroctonus ponderosae Hopk., causes extensive mortality of lodgepole pine, Pinus contorta var. latifolia Engelm., throughout western North America (Van Sickle 1982). The Prince Rupert Forest Region, in the northwest of British Columbia, initiated an aggressive beetle management program in 1981. Logging of infested stands, and winter felling and burning of individual infested trees are the most common direct control techniques.The “Bristol Lake” infestation developed in the Bulkley Forest District, approximately 55 km northwest of Smithers, B.C., on a steep rocky ridge within the valley of Harold Price Creek. The area contained large volumes of mature lodgepole pine, and control of the infestation was therefore considered critical to the local beetle management plan, but the size (50 ha) and rough topography of the infested area precluded normal direct control measures.


2021 ◽  
Vol 25 (9) ◽  
pp. 4681-4699
Author(s):  
Jianning Ren ◽  
Jennifer C. Adam ◽  
Jeffrey A. Hicke ◽  
Erin J. Hanan ◽  
Christina L. Tague ◽  
...  

Abstract. Mountain pine beetle (MPB) outbreaks in the western United States result in widespread tree mortality, transforming forest structure within watersheds. While there is evidence that these changes can alter the timing and quantity of streamflow, there is substantial variation in both the magnitude and direction of hydrologic responses, and the climatic and environmental mechanisms driving this variation are not well understood. Herein, we coupled an eco-hydrologic model (RHESSys) with a beetle effects model and applied it to a semiarid watershed, Trail Creek, in the Bigwood River basin in central Idaho, USA, to examine how varying degrees of beetle-caused tree mortality influence water yield. Simulation results show that water yield during the first 15 years after beetle outbreak is controlled by interactions between interannual climate variability, the extent of vegetation mortality, and long-term aridity. During wet years, water yield after a beetle outbreak increased with greater tree mortality; this was driven by mortality-caused decreases in evapotranspiration. During dry years, water yield decreased at low-to-medium mortality but increased at high mortality. The mortality threshold for the direction of change was location specific. The change in water yield also varied spatially along aridity gradients during dry years. In wetter areas of the Trail Creek basin, post-outbreak water yield decreased at low mortality (driven by an increase in ground evaporation) and increased when vegetation mortality was greater than 40 % (driven by a decrease in canopy evaporation and transpiration). In contrast, in more water-limited areas, water yield typically decreased after beetle outbreaks, regardless of mortality level (although the driving mechanisms varied). Our findings highlight the complexity and variability of hydrologic responses and suggest that long-term (i.e., multi-decadal mean) aridity can be a useful indicator for the direction of water yield changes after a disturbance.


Sign in / Sign up

Export Citation Format

Share Document