scholarly journals Regeneration of Pinus halepensis (Mill.) through Organogenesis from Apical Shoot Buds

Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 363
Author(s):  
Cátia Pereira ◽  
Itziar A. Montalbán ◽  
Ana Pedrosa ◽  
Jéssica Tavares ◽  
Alexey Pestryakov ◽  
...  

Organogenesis and somatic embryogenesis have been widely applied as the two main regeneration pathways in plant tissue cultures. However, recalcitrance is still the main restriction in the clonal propagation of many woody species, especially in conifers. They undergo a “phase change” that leads to significant loss of vegetative propagation capacity, reducing the aptitude of tissues and organs to be regenerated in vitro beyond this point. In line with this, the in vitro regeneration of mature conifer trees has been a long-cherished goal in many laboratories worldwide. Based on previous works in Pinus species regeneration from adult trees, we now present data about the culture of apical shoot buds in an attempt to induce organogenesis and somatic embryogenesis to clone mature trees of Aleppo pine (Pinus halepensis). Reinvigorated axillary shoots were submitted to conditions usually applied to induce somatic embryogenesis through the manipulation of culture media, including the use of auxins such as 2,4-Dichlorophenoxyacetic acid and 1-Naphthaleneacetic acid, cytokinins (6-benzyladenine and kinetin), and phytosulfokine (50, 100, and 200 nM). Although somatic embryos could not be obtained, an embryogenic-like tissue was produced, followed by the emergence of actively proliferating non-embryogenic calli. Variations in the consistence, texture, and color of non-embryogenic calli were observed; especially those arising in the media containing phytosulfokine. Reinvigorated shoots, induced by 22 or 44 µM 6-benzyladenine, were obtained through organogenesis and acclimatized, and phenotypically normal plants were obtained.

Author(s):  
Cátia Pereira ◽  
Itziar A. Montalbán ◽  
Ana Pedrosa ◽  
Jéssica Tavares ◽  
Alexey Pestryakov ◽  
...  

Organogenesis and somatic embryogenesis have been widely applied as the two main regeneration pathways in plant tissue culture. However, recalcitrance is still a main restriction in the clonal propagation of many woody species, especially in conifers. They undergo a “phase change” that leads to significant loss of organogenic and embryogenic capacity, thus reducing the responsive tissues or organs to juvenile material, and narrowing the competence window. In this sense, in vitro regeneration of mature conifer trees has been a long-cherished goal in many laboratories worldwide. In this work, apical shoot buds were used as explants for both organogenesis and somatic embryogenesis in order to cloning mature trees of Aleppo pine. Reinvigorated axillary shoots were submitted to somatic embryogenesis induction through the manipulation of culture media, including the use of auxins such as 2,4-D and NAA, cytokinins (BA and kinetin) and phytosulfokine (50, 100 and 200 nM). Although somatic embryos could not be obtained, embryogenic-like tissue was produced followed by the appearance of actively proliferating non-embryogenic calli and differences between treatments were found, especially when phytosulfokine was added to the induction media. Organogenic system produced reinvigorated shoots from both BA treatments tested (22 and 44 µM), from juvenile somatic trees and adult trees, and ex-vitro acclimatized plants were developed.


2006 ◽  
Vol 86 (1) ◽  
pp. 63-69
Author(s):  
Seedhabadee Ganeshan ◽  
Brian J Weir ◽  
Monica Båga ◽  
Brian G Rossnagel ◽  
Ravindra N Chibbar

A simple two-step model for evaluation of in vitro regeneration protocols is proposed based on callus induction and regeneration from immature scutella of two Canadian barley (Hordeum vulgare L.) genotypes, AC Metcalfe and SB92559 using the Enhanced Regeneration System (ERS). The number of explants producing embryogenic callus, the number of plants per embryogenic callus and the number of plants per explant were considered. Tissue culture parameters included three combinations of growth regulators, two carbon sources in culture media, and three cold treatment regimes of spikes prior to scutella isolation. Culture medium containing 5 µM 2,4-dichlorophenoxy acetic acid (2,4-D) and 0.5 µM benzyl adenine (BA) induced the highest percent of embryogenic calli and the highest number of shoots per embryogenic callus from AC Metcalfe. Medium containing 3.75 µM 2,4-D and 0.75 µM BA gave the best response for SB92559. Both genotypes produced more shoots on maltose than on sucrose medium. A 2-d treatment of spikes at 4°C resulted in best response for SB92559. Regeneration response from AC Metcalfe scutella from spikes was unaffected by being subjected to 2, 4 or 6 d of cold. Conditions resulting in best responses from both genotypes were tested on four commercial barley varieties. However, these lines showed inferior regeneration compared to SB92559 and AC Metcalfe. Key words: Hordeum vulgare, scutella, embryogenic callus, shoot production


HortScience ◽  
2011 ◽  
Vol 46 (8) ◽  
pp. 1132-1135 ◽  
Author(s):  
Martín Mata-Rosas ◽  
Rosario Julieta Baltazar-García ◽  
Victor Manuel Chávez-Avila

A protocol for in vitro propagation from protocorms of Oncidium tigrinum Llave & Lex., a threatened species distributed in Mexico and highly appreciated as an ornamental, was developed. Two different explants, entire protocorms and longitudinal halves of protocorms, were used. In addition, the effect of two different culture media, Murashige and Skoog (MS) and modified Knudson (KCm), supplemented with N6-benzyladenine (BA) (0, 0.5, 1, 2, 3, and 5 mg·L−1) and/or α-naphthaleneacetic acid (NAA) at 0, 0.1, and 0.5 mg·L−1 was investigated. Adventitious shoot formation by direct organogenesis was obtained in all treatments; in some cases, the formation of protocorm-like bodies was induced. Shoot formation was greater for entire protocorms; the best treatment was MS medium containing at BA 1 to 2 mg·L−1 in combination with at NAA 0.1 mg·L−1. The average height of shoots was three times greater in MS medium than in KCm medium. Subculturing individual shoots in MS medium without plant growth regulators, but with 1 g·L−1 activated charcoal, allowed further development and rooting. An ex vitro survival rate of almost 100% was achieved. This study represents a comprehensive application for propagation, conservation, and sustainable use of this valuable natural resource.


2021 ◽  
Vol 42 (5) ◽  
pp. 1232-1238
Author(s):  
D.S. Sparjanbabu ◽  
◽  
P.N. Kumar ◽  
S.R.K. Motukuri ◽  
D. Ramajayam ◽  
...  

Aim: This study evaluated efficient culture media for the regeneration of elite material through somatic embryogenesis from oil palm zygotic embryos. Methodology: For callus induction, zygotic embryos of four elite genotypes (G1-264T, G2-238DX17P, G3-37DX17P and G4-237T) were cultured on three basal media (Y3, MS and N6) with different auxin 2 mg l-1 (Picloram, 2,4-D and Dicamba) combinations. Subculture was made every month for three passages. It evaluated various callus characters. The embryogenic calli from callus induction media were transferred to the embryo maturation medium and subcultured until the polyembryoids formed. For shoot and root formation, somatic embryo clumps were transferred into regeneration media. In-vitro plantlets with well-grown roots were hardened in pots for six weeks and assessed clonal fidelity using polymorphic SSR primers. Results: Among the treatments, calli from N6+2,4-D, Y3+2,4-D and N6+Picloram showed the highest embryogenic callus potential. G4-237T induced more embryogenic calli (32.982) among genotypes, which was on par with G1-264T (24.196). Embryogenic calli grown on N6 media with Dicamba showed the highest proliferation rate (1.141). After 60 days of culture on regeneration media, the highest number of plantlets per somatic embryogenic clump was obtained from G1-264T on N6 media supplemented with Dicamba. Interpretation: Culture media salt concentration showed a significant difference among media by causing perturbations of auxin flow during somatic embryogenesis affecting callus induction, proliferation and plantlet regeneration. This may be useful for standardizing the genotype-specific regeneration media in oil palm.


1997 ◽  
Vol 75 (3) ◽  
pp. 492-500 ◽  
Author(s):  
Delphine Popiers ◽  
Frédéric Flandre ◽  
Brigitte S. Sangwan-Norreel

In vitro regeneration of pea (Pisum sativum L.), a regeneration recalcitrant legume, was optimised using thidiazuron. Buds were initiated from the meristems of the cotyledonary nodes of embryo axes, isolated from mature seeds, and subcultured on Murashige and Skoog medium supplemented with 13.3 μM 6-benzylaminopurine, 16.1 μM α-naphthaleneacetic acid, and 0.2 μM 2,3,5-triiodobenzoic acid. Proliferation of buds was preceded by the formation of white nodular-like protrusions. These structures were cut transversally in fine slices and subcultured on the same medium or in presence of thidiazuron that produces a second wave of secondary budding. The best results (90–110 buds per expiant) were obtained with 10 μM thidiazuron. The capacity of regeneration was genotype independent and reproducible. Buds elongated on the initial medium, then formed roots in presence of 5.37 μM α-naphthaleneacetic acid. and developed into viable plants. Key words: Pisum sativum L., regeneration, meristems, embryo axes, thidiazuron.


2020 ◽  
Vol 21 (8) ◽  
Author(s):  
Dwi Hapsoro ◽  
Rahmadyah Hamiranti ◽  
Yusnita Yusnita

Abstract. Hapsoro D, Hamiranti R, Yusnita Y. 2020. In vitro somatic embryogenesis of superior clones of robusta coffee from Lampung, Indonesia: Effect of genotypes and callus induction media. Biodiversitas 21: 3811-3817. This study aimed to investigate the effects of genotypes and primary callus induction media on somatic embryogenesis of superior robusta coffee clones of Lampung. Leaf explants of clones Tugusari, Komari, Tugino, and Wanto were cultured on two types of primary callus induction media (PCIM). PCIM1 consisted of half-strength MS salts, 30 gL-1 sucrose, added with (mgL-1) 0.1 thiamine-HCl, 0.5 nicotinic acids, 0.5 pyridoxine-HCl, 100 Myo-inositol, 200 ascorbic acids, 150 citric acids, and 1 benzyl adenine. PCIM2 consisted of NPCM salts, 30 gL-1 sucrose, added with (mgL-1) 15 thiamine-HCl, 1 nicotinic acid, 1 pyridoxine-HCl, 2 glycines, 130 Myo-inositol, 200 ascorbic acids, 150 citric acids, 1 2,4-dichlorophenoxyacetic acid, and 2 thidiazuron. The highest percentage (100%) of primary callus formation was found in Komari and Wanto clones. PCIM2 resulted in more primary calli than PCIM1. When subcultured to embryogenic callus induction medium, primary calli of clone Komari and Wanto developed into a high percentage of embryogenic calli, while those of the other two turned brown and died. PCIM2-derived primary calli developed into more embryogenic calli. When subcultured on somatic embryo (SE) regeneration medium, these calli underwent the formation of SE of various stages. When subcultured to plant regeneration medium, these SEs developed into plantlets.


2006 ◽  
Vol 2 (2) ◽  
pp. 146-151 ◽  
Author(s):  
R.O. Oduor ◽  
E.N.M. Njagi ◽  
S. Ndung` u ◽  
J.S. Machuka

2018 ◽  
Vol 12 (2) ◽  
pp. 117
Author(s):  
Cecília Moreira Serafim ◽  
Arlene Santisteban Campos ◽  
Priscila Bezerra Dos Santos Melo ◽  
Ana Cecília Ribeiro de Castro ◽  
Ana Cristina Portugal Pinto de Carvalho

Faced with the demand for plants potted for their foliage, Anthurium maricense is seen as a viable option. However, most of the studies on obtaining micropropagated plantlets are for A. andraeanum, with nothing yet reported for A. maricense. The aim of this study therefore, was to evaluate the effect of four cytokinins in different concentrations, on the in vitro induction of shoots from nodal segments of A. maricense. The experimental design was completely randomised in a 4 x 4 factorial scheme, with four cytokinins (BAP, ZEA, CIN and 2iP) and 4 concentrations (0, 2.22, 4.44 and 6.66 μM), for a total of 16 treatments, with 6 replications of five test tubes, and using one nodal segment. Cultures were kept in a growth room at 25 ± 2°C, a photoperiod of 16 h and a light intensity of 30 μmolm-2 s-1 for 60 days. After this period, the number of shoots formed per node was evaluated. The addition of a cytokinin to the culture medium was determinant for the in vitro regeneration of shoots in A. maricense. The greatest estimated number of shoot formations in A. maricense were obtained in the culture media containing ZEA (3.87) and BAP (3.30), both at concentration of 6.66 μM.


Sign in / Sign up

Export Citation Format

Share Document