Intensification de la régénération du pois (Pisum sativum L.), par le thidiazuron, via la formation de structures caulinaires organogènes

1997 ◽  
Vol 75 (3) ◽  
pp. 492-500 ◽  
Author(s):  
Delphine Popiers ◽  
Frédéric Flandre ◽  
Brigitte S. Sangwan-Norreel

In vitro regeneration of pea (Pisum sativum L.), a regeneration recalcitrant legume, was optimised using thidiazuron. Buds were initiated from the meristems of the cotyledonary nodes of embryo axes, isolated from mature seeds, and subcultured on Murashige and Skoog medium supplemented with 13.3 μM 6-benzylaminopurine, 16.1 μM α-naphthaleneacetic acid, and 0.2 μM 2,3,5-triiodobenzoic acid. Proliferation of buds was preceded by the formation of white nodular-like protrusions. These structures were cut transversally in fine slices and subcultured on the same medium or in presence of thidiazuron that produces a second wave of secondary budding. The best results (90–110 buds per expiant) were obtained with 10 μM thidiazuron. The capacity of regeneration was genotype independent and reproducible. Buds elongated on the initial medium, then formed roots in presence of 5.37 μM α-naphthaleneacetic acid. and developed into viable plants. Key words: Pisum sativum L., regeneration, meristems, embryo axes, thidiazuron.

2013 ◽  
Vol 23 (2) ◽  
pp. 184-189 ◽  
Author(s):  
Alok Das ◽  
Sumit Kumar ◽  
P. Nandeesha ◽  
Indu Singh Yadav ◽  
Jyoti Saini ◽  
...  

Author(s):  
Shikha Sharma ◽  
Geetika Gambhir ◽  
D. K. Srivastava

In vitro regeneration of pea explants (Pisum sativum L. var. ‘Lincon’) was done in 49 different combinations and concentrations of BAP, BAP and NAA, BAP and IBA, TDZ, TDZ and Adenine for shoot regeneration from hypocotyl, root, leaf and cotyledonary node. High frequency shoot regeneration was obtained in hypocotyl (81.43%), root(83.53%) and cotyledonary node(72.76%) on MS medium supplemented with 4.50 mg/l BAP and 1.86mg/l NAA, 2.00mg/l TDZ and4.50 mg/l BAP and 1.86mg/l NAA respectively. No shoot regeneration was obtained from leaf explants on any of the combination used. Shoot elongation was observed on the same medium used for shoot regeneration respectively.MS medium supplemented with 0.20 mg/l IBA was found best for root regeneration from in vitro raised shoots. The plantlets were able to regenerate within 6-7 weeks. The regenerated plantlets were acclimatized in pre-sterilized cocopeat.


2019 ◽  
Vol 139 (3) ◽  
pp. 547-561 ◽  
Author(s):  
Chandrasekaran Ajithan ◽  
Venkatachalam Vasudevan ◽  
Dorairaj Sathish ◽  
Selvam Sathish ◽  
Veda Krishnan ◽  
...  

2014 ◽  
Vol 50 (No. 2) ◽  
pp. 52-64 ◽  
Author(s):  
P. Smýkal

Pea (Pisum sativum L.) has been extensively used in early hybridization studies and it was the model organism of choice for Mendel’s discovery of the laws of inheritance, making pea part of the foundation of modern genetics. Pea has also been used as model for experimental morphology and physiology. However, subsequent progress in pea genomics has lagged behind many other plant species, largely as a consequence of its genome size and low economic significance. The availability of the genome sequences of five legume species (Medicago truncatula, Lotus japonicus, Glycine max, Cajanus cajan and Cicer aerietinum) offers opportunities for genome wide comparison. The combination of a candidate gene and synteny approach has allowed the identification of genes underlying agronomically important traits such as virus resistances and plant architecture. Useful genomic resources already exist and include several types of molecular marker sets as well as both transcriptome and proteome datasets. The advent of greater computational power and access to diverse germplasm collections enable the use of association mapping to identify genetic variation related to desirable agronomic traits. Current genomic knowledge and technologies can facilitate the allele mining for novel traits and their incorporation from wild Pisum sp. into elite domestic backgrounds. Fast neutron and targeting-induced local lesions in genomes (TILLING) pea mutant populations are available for reverse genetics approaches, BAC libraries for positional gene cloning as well as transgenic and in vitro regeneration for proof of function through gene silencing or over-expression. Finally, recently formed International Pea Genome Sequencing Consortium, holds promise to provide the pea genome sequence by 2015, a year of 150 anniversary of Mendel’s work.


2016 ◽  
Vol 68 (7-8) ◽  
pp. 762-770 ◽  
Author(s):  
Miaomiao Shi ◽  
Kai Wang ◽  
Shujuan Yu ◽  
Robert G. Gilbert ◽  
Qunyu Gao

2020 ◽  
Vol 72 (9-10) ◽  
pp. 1900228 ◽  
Author(s):  
Manolo Gonzalez ◽  
Jose Alvarez‐Ramirez ◽  
E. Jaime Vernon‐Carter ◽  
Isabel Reyes ◽  
Lurdes Alvarez‐Poblano

2003 ◽  
Vol 30 (2) ◽  
pp. 75-79 ◽  
Author(s):  
H. Y. Rey ◽  
L. A. Mroginski

Abstract The in vitro regeneration potential of shoot apical tips (2 to 3 mm in length), meristems (0.3 to 0.5 mm in length), and nodal segments (4 to 7 mm long with an axillary bud) of diploid (2n = 2x = 20) and triploid (2n = 3x = 30) cytotypes of Arachis pintoi was evaluated. Explants were cultured on MS medium supplemented with different concentrations and combinations of naphthaleneacetic acid (NAA) and benzyladenine (BA). In one experiment the effect of gibberellic acid was tested. The cultures were done in liquid and solid media. Plant regeneration can be readily achieved from all explants in one step of 30 d culture on MS + 0.01 mg/L each of NAA and BA or two steps consisting of 1) shoots regeneration through culture of explants on MS + 0.01 mg/L each of NAA and BA, and 2) induction of rooting in regenerated shoots by reculture on MS + 0.01 mg/L NAA. The plantlets were successfully transferred to pots in a greenhouse.


Plants ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 178 ◽  
Author(s):  
Sabbadini ◽  
Ricci ◽  
Limera ◽  
Baldoni ◽  
Capriotti ◽  
...  

Prunus spp. is one of the most recalcitrant fruit tree species in terms of in vitro regeneration and transformation, mostly when mature tissues are used as explants. The present study describes the in vitro regeneration via indirect organogenesis, and Agrobacterium tumefaciens-mediated transformation of the peach rootstock Hansen 536 (Prunus persica × Prunus amygdalus) through the use of meristematic bulks (MBs) as starting explants. Efficient adventitious shoot regeneration was obtained when Hansen 536 MBs were cultured on an optimized medium consisting of modified McCown Woody Plant medium (WPM) enriched with 4.4 M 6-Benzyladenine (BA), 0.1 M 1-Naphthaleneacetic acid (NAA) and 6.0 g L−1 plant agar S1000 (B&V). MB slices were used later as starting explants for Agrobacterium-mediated transformation to introduce an RNAi construct “ihp35S-PPV194” against PPV virus. Transgenic events were identified by both green fluorescent protein (GFP) screening and kanamycin selection at different concentrations (0, 17 or 42 M). GFP-fluorescent proliferating callus lines were selected and confirmed to stably express the ihp35S-PPV194::eGFP gene construct by molecular analysis. Although shoot regeneration from these transgenic calli has not been obtained yet, this represents one of the few examples of successful attempts in peach genetic transformation from somatic tissues, and also serves as a useful in vitro system for future gene functional analysis in peach.


Sign in / Sign up

Export Citation Format

Share Document