scholarly journals Land Use and Land Cover Changes in the Diversity and Life Zone for Uncontacted Indigenous People: Deforestation Hotspots in the Yasuní Biosphere Reserve, Ecuadorian Amazon

Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1539
Author(s):  
Marco Heredia-R ◽  
Bolier Torres ◽  
Francisco Cabrera-Torres ◽  
Emma Torres ◽  
Carlos G. H. Díaz-Ambrona ◽  
...  

Land use and land cover change (LULC) is an essential component for the monitoring environmental change and managing natural resources in areas of high natural and cultural biodiversity, such as the Amazon biome. This study was conducted in in the northern Amazon of Ecuador, specifically in the Diversity and Life Zone (DLZ) of the Yasuní Biosphere Reserve (YBR). The general aim was to investigate the territorial dynamics of land use/land cover changes to support policies for environmental and sociocultural protection in the DLZ. Specific objectives included (i) mapping LULC spatial and temporal dynamics in the DLZ in the period from 1999 to 2018, (ii) identifying sensitive LULC hotspots within the DLZ, and (iii) defining the possible policy implications for sustainable land use in the DLZ. Multitemporal satellite imagery from the Landsat series was used to map changes in LULC, which were divided into three-time stages (1999–2009, 2009–2018, 1999–2018). We adopted open-access Landsat images downloaded from the United States Geological Survey (USGS). The processes for assessing LULC in the DLZ included (1) data collection and analysis, (2) data processing for remote sensing, (3) thematic land cover, and (4) homogenization and vectorization of images. The results showed that in the period 1999–2018, most of the uses and land cover were transformed into pastures in the DLZ. Therefore, it is important to improve territorial planning, to avoid conflicts between indigenous populations, migrant settlers, and uncontacted indigenous populations that live in the DLZ, within the YBR.

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Tewodros Getu Engida ◽  
Tewodros Assefa Nigussie ◽  
Abreham Berta Aneseyee ◽  
John Barnabas

Understanding the hydrological process associated with Land Use/Land Cover (LU/LC) change is vital for decision-makers in improving human wellbeing. LU/LC change significantly affects the hydrology of the landscape, caused by anthropogenic activities. The scope of this study is to investigate the impact of LU/LC change on the hydrological process of Upper Baro Basin for the years 1987, 2002, and 2017. The Soil Water Assessment Tool (SWAT) model was used for the simulation of the streamflow. The required data for the SWAT model are soils obtained from the Food and Agriculture Organization; Digital Elevation Model (DEM) and LU/LC were obtained from the United States Geological Survey (USGS). The meteorological data such as Rainfall, Temperature, Sunshine, Humidity, and Wind Speeds were obtained from the Ethiopian National Meteorological Agency. Data on discharge were obtained from Ministry of Water, Irrigation and Electricity. Ecosystems are deemed vital. Landsat images were used to classify the LU/LC pattern using ERDAS Imagine 2014 software and the LU/LC were classified using the Maximum Likelihood Algorithm of Supervised Classification. The Sequential Uncertainty Fitting (SUFI-2) global sensitivity method within SWAT Calibration and Uncertainty Procedures (SWAT-CUP) was used to identify the most sensitive streamflow parameters. The calibration was carried out using observed streamflow data from 01 January 1990 to 31 December 2002 and a validation period from 01 January 2003 to 31 December 2009. LU/LC analysis shows that there was a drastic decrease of grassland by 15.64% and shrubland by 9.56% while an increase of agricultural land and settlement by 18.01% and 13.01%, respectively, for 30 years. The evaluation of the SWAT model presented that the annual surface runoff increased by 43.53 mm, groundwater flow declined by 27.58 mm, and lateral flow declined by 5.63 mm. The model results showed that the streamflow characteristics changed due to the LU/LC change during the study periods 1987–2017 such as change of flood frequency, increased peak flows, base flow, soil erosion, and annual mean discharge. Curve number, an available water capacity of the soil layer, and soil evaporation composition factor were the most sensitive parameters identified for the streamflow. Both the calibration and validation results disclosed a good agreement between measured and simulated streamflow. The performance of the model statistical test shows the coefficient of determination (R2) and Nash–Sutcliffe (NS) efficiency values 0.87 and 0.81 for calibration periods of 1990–2002 and 0.84 and 0.76 for the validation period of 2003 to 2009, respectively. Overall, LU/LC significantly affected the hydrological condition of the watershed. Therefore, different conservation strategies to maintain the stability and resilience of the ecosystem are vital.


2021 ◽  
Vol 4 (3) ◽  
pp. 132-146
Author(s):  
Md. Lutfor Rahman ◽  
Syed Hafizur Rahman

This study aims at classifying land use land cover (LULC) patterns and detect changes in a 'secondary city' (Savar Upazila) in Bangladesh for 30 years i.e., from 1990 to 2020. Two distinct sets of Landsat satellite imagery, such as Landsat Thematic Mapper (TM) 1990 and Landsat 7 ETM+ 2020, were collected from the United States Geological Survey (USGS) website. Using ArcMap 10.3, the maximum likelihood algorithm was used to perform a supervised classification methodology. The error matrix and Kappa Kat were done to measure the mapping accuracy. Both images were classified into six separate classes: Cropland, Barren land, Built-up area, Vegetation, Waterbody, and Wetlands. From 1990 to 2020, Cropland, Barren land, Waterbody, and Wetlands have been decreased by 30.63%, 11.26%, 23.54%, and 21.89%, respectively. At the same time, the Built-up area and Vegetation have been increased by 161.16% and 5.77%, respectively. The research revealed that unplanned urbanization had been practiced in the secondary city indicated by the decreases in Cropland, Barren land, Wetland, and Waterbody, which also showed direct threats to food security and freshwater scarcity. An increase in Vegetation (mostly homestead vegetation) indicates some environment awareness programs that encourage people to maintain homestead and artificial gardens. The study argues for the sustainable planning of a secondary city for a developing country's future development.


2020 ◽  
Author(s):  
Gemechu Shale Ogato ◽  
Amare Bantider ◽  
Davide Geneletti

Abstract Background: Land use/land cover change in urban watersheds of developing countries like Ethiopia is claimed to be a consequence of complex interaction of different actors, driving forces, and land itself. It is asserted to result in the degradation of natural vegetation and significant increases in impervious surfaces. The purpose of the study was to analyze spatio-teporal changes in land use/ land cover in Huluka watershed where Ambo town is situated and examine their drivers and effects with environmental implications.Results: The overall increase of urban built-up area, cultivated land, and bare land use/land cover type with 351%, 105%, and 41.9% respectively between the year 1979 and 2017 implies the increase in flooding disaster risk in the watershed as such land use/land cover types exacerbate the run-off conditions in the watershed. Infrastructural expansion, agricultural expansion, increased demand for fuel wood and wood for construction, local environmental factors, local biophysical drivers, and local Social events were identified as proximate drivers of land use/land cover changes in the study area. Demographic factors, economic factors, technological factors, policy and institutional factors and cultural factors were confirmed as the underlying drivers of land use/land cover change in the watershed. Increased flooding risk, increased soil erosion; increased sedimentation into the lake (Dendi lake) and rivers (Huluka, Awaro, Debis, Boji, Bolo, Aleltu, Karkaro, and Korke), decrease in soil fertility resulting from flooding risk, and change in climatic parameters (decrease in annual rainfall and increase in heat during dry season) were claimed as the negative effects of land use/land cover change in the study area.Conclusions: Practice of appropriate land use planning and management in the watershed, appropriate environmental impact assessment (EIA), and proper planning and management of socio-cultural, economic, and environmental development are of paramount importance to promote sustainable development in the watershed.


Author(s):  
Rajan Maurya ◽  
V. S. Negi ◽  
B. W. Pandey ◽  
B. W. Pandey

In the modern era of globalisation demand of natural resources is very high for the well-being of human; high demand results in the degradation of natural resources, uneven pattern of development and changes in naturally available resources. Changes in land use land cover (LULC) is a dynamic process, which varies with time and space. It is the main component in the planning and management of natural resources, and analysing the changes in the environment. There are many remote sensing and GIS-based model used by the researcher in the world to identify the land use pattern. Here, Digital change detection model is used to determine the changes in Land use and Land cover with geo-referenced multi-temporal remote sensing data. This present study is an attempt to identify the spatial-temporal variation of LULC in the Kinnaur district of Himachal Pradesh, based on the secondary data. Landsat imageries are collected from the United States Geological Survey (USGS) for a different period like Landsat TM, Landsat ETM +, and Landsat OLI. Kinnaur district has witnessed many hydro-electric power projects, dam, tunnel and road construction, which has changed the pattern of land use in a few decades. It is indispensable to have a sustainable development mechanism for the fragile ecosystem. It includes the initiative of local government and Corporate Social Responsibility (CSR), government agencies and global partners to improve the degraded land condition.Keywords: Natural Resources, Land Use/ Land Cover, Kinnaur, Hydro-electric Power Projects.


2021 ◽  
Vol 14 (14) ◽  
Author(s):  
Syed Atif Bokhari ◽  
Zafeer Saqib ◽  
Amjad Ali ◽  
Arif Mahmud ◽  
Nadia Akhtar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document