scholarly journals Submerged Fermentation of Animal Fat By-Products by Oleaginous Filamentous Fungi for the Production of Unsaturated Single Cell Oil

Fermentation ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 300
Author(s):  
Sushil S. Gaykawad ◽  
Sreerekha S. Ramanand ◽  
Johanna Blomqvist ◽  
Boris Zimmermann ◽  
Volha Shapaval ◽  
...  

Animal waste fats were explored as a fermentation substrate for the production of high-value unsaturated single cell oil (SCO) using oleaginous fungi, Mucor circinelloides and Mortierella alpina. Both strains showed good growth and lipid accumulation when using animal fat as a single carbon source. The biomass concentration of 16.7 ± 2.2 gDCW/L and lipid content of 54.1%wt (of dry cell weight) were obtained for Mucor circinelloides in shake flask experiments, surpassing the biomass yield achieved in batch and fed-batch fermentation. In contrast, Mortierella alpina gave the highest biomass concentration (8.3 ± 0.3 gDCW/L) and lipid content (55.8%wt) in fed-batch fermentation. Fat grown Mortierella alpina was able to produce arachidonic acid (ARA), and the highest ARA content of 23.8%wt (of total lipid weight) was in fed-batch fermentation. Gamma-linolenic acid (GLA) was produced by both fungal strains. At the end of fed-batch fermentation, the GLA yields obtained for Mucor circinelloides and Mortierella alpina were 4.51%wt and 2.77%wt (of total lipid weight), respectively. This study demonstrates the production of unsaturated SCO-rich fungal biomass from animal fat by fermentation.

2021 ◽  
Vol 26 (2) ◽  
pp. 2464-2470
Author(s):  
ANCA-IRINA GALACTION ◽  
◽  
ALEXANDRA CRISTINA BLAGA ◽  
ALEXANDRA TUCALIUC ◽  
LENUŢA KLOETZER ◽  
...  

The previous studies on ergosterol production by Saccharomyces cerevisiae in presence of n-dodecane as oxygen-vector have been continued by mathematical modelling the fermentation process. In this purpose, the most efficient fermentation regime has been considered, namely fed-batch fermentation, and was based on the influences of hydrocarbon volumetric fraction, biomass concentration, and aeration rate on the ergosterol content inside the yeast cells. The model describing the fermentation process has been established by means of the statistical analysis, using a factorial experiment of second order. The considered variables control the ergosterol production in a 94.4% extent, the biomass concentration exhibiting the most important influence.


2019 ◽  
Vol 57 (3) ◽  
pp. 388-398 ◽  
Author(s):  
Tábita Veiga Dias Rodrigues ◽  
Thalita D. Amore ◽  
Erika Carvalho Teixeira ◽  
Janaina Fernandes de Medeiros Burkert

Carotenoids are natural pigments that can be produced through biotechnological processes. However, the costs are relatively high and can be minimized by using lower-cost substrates as alternative nutrient sources. The fed-batch fermentation is one of the techniques used to obtain a high biomass concentration and/or maximum production. Thus, the aim of this work is to produce carotenoids in batch and fed-batch fermentation with the yeast Rhodotorula mucilaginosa CCT 7688 using agroindustrial byproducts in the culture medium. Carotenoid production was increased using experimental designs, which modified the concentration of the agroindustrial medium. In batch production the highest concentrations of total carotenoids (1248.5 μg/L) and biomass (7.9 g/L) were obtained in the medium containing 70 g/L sugar cane molasses and 3.4 g/L corn steep liquor at 25 °C and 180 rpm in 168 h, demonstrating an increase of 17 % when compared to the standard yeast malt medium (1200 μg/L). In the fed-batch production, different feeding strategies were tested with 30 g/L sugar cane molasses and 6.5 g/L corn steep liquor, reaching a total carotenoid production of 3726 μg/L and biomass concentration of 16 g/L. Therefore, the strategy of the fed-batch process resulted in an increase in the carotenoid production of approx. 400 % compared to that in the batch process (740.3 μg/L). Thus, the R. mucilaginosa strain has the potential to produce carotenoids in agroindustrial medium.


2012 ◽  
Vol 18 (5) ◽  
pp. 791
Author(s):  
Xiaoyun DING ◽  
Bin ZHUGE ◽  
Huiying FANG ◽  
Hong ZONG ◽  
Xiaoxiao LIU ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document