mortierella alpina
Recently Published Documents


TOTAL DOCUMENTS

265
(FIVE YEARS 52)

H-INDEX

37
(FIVE YEARS 4)

Fermentation ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 300
Author(s):  
Sushil S. Gaykawad ◽  
Sreerekha S. Ramanand ◽  
Johanna Blomqvist ◽  
Boris Zimmermann ◽  
Volha Shapaval ◽  
...  

Animal waste fats were explored as a fermentation substrate for the production of high-value unsaturated single cell oil (SCO) using oleaginous fungi, Mucor circinelloides and Mortierella alpina. Both strains showed good growth and lipid accumulation when using animal fat as a single carbon source. The biomass concentration of 16.7 ± 2.2 gDCW/L and lipid content of 54.1%wt (of dry cell weight) were obtained for Mucor circinelloides in shake flask experiments, surpassing the biomass yield achieved in batch and fed-batch fermentation. In contrast, Mortierella alpina gave the highest biomass concentration (8.3 ± 0.3 gDCW/L) and lipid content (55.8%wt) in fed-batch fermentation. Fat grown Mortierella alpina was able to produce arachidonic acid (ARA), and the highest ARA content of 23.8%wt (of total lipid weight) was in fed-batch fermentation. Gamma-linolenic acid (GLA) was produced by both fungal strains. At the end of fed-batch fermentation, the GLA yields obtained for Mucor circinelloides and Mortierella alpina were 4.51%wt and 2.77%wt (of total lipid weight), respectively. This study demonstrates the production of unsaturated SCO-rich fungal biomass from animal fat by fermentation.


2021 ◽  
Vol 10 (47) ◽  
Author(s):  
Shu Yang ◽  
Boris A. Vinatzer

Mortierella alpina is a filamentous fungus commonly associated with soil and is one of very few fungal species known to include strains with ice nucleation activity. Here, we report the draft genome sequence of the ice nucleation-active M. alpina strain LL118, isolated from aspen leaf litter collected in Alberta, Canada.


2021 ◽  
Vol 8 ◽  
Author(s):  
Xin Tang ◽  
Xiaoqi Sun ◽  
Xuxu Wang ◽  
Hao Zhang ◽  
Yong Q. Chen ◽  
...  

Mortierella alpina has a strong capacity for lipid accumulation. Isocitrate dehydrogenase (IDH) plays an important role in affecting the flow of intracellular carbon sources and reducing power NADPH for lipid biosynthesis. In this study, the effect of various IDHs (NAD+- and NADP+-specific) in M. alpina on the lipid accumulation was investigated through homologous overexpression. The results showed that the transcription level and enzyme activity of the IDHs from M. alpina (MaIDHs) in homologous overexpressing strains were higher than those of the control strain, but that their biomass was not significantly different. Among the various NAD+-specific MaIDH1/2/3 overexpression, NAD+-MaIDH3 reduced total lipid content by 12.5%, whereas overexpression NAD+-MaIDH1 and NAD+-MaIDH2 had no effect on fatty acid content. Intracellular metabolites analysis indicated that the overexpression NAD+-MaIDH3 strain had reduced the fatty acid accumulation, due to its greater carbon flux with the tricarboxylic acid cycle and less carbon flux with fatty acid biosynthesis. For the NADP+-MaIDH4/5/6 recombinant strains overexpressing only NADP+-MaIDH4 enhanced the total fatty acid content by 8.2%. NADPH analysis suggested that this increase in lipid accumulation may have been due to the great reducing power NADPH is produced in this recombinant strain. This study provides theoretical basis and guidance for the analysis of the mechanism of IDH function and the potential to improve lipid production in M. alpina.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 895
Author(s):  
Fuzia Elfituri Muftah Eltariki ◽  
Kartikeya Tiwari ◽  
Mohammed Abdelfatah Alhoot

Background: A large number of undiscovered fungal species still exist on earth, which can be useful for bioprospecting, particularly for single cell oil (SCO) production. Mortierella is one of the significant genera in this field and contains about hundred species. Moreover, M. alpina is the main single cell oil producer at commercial scale under this genus. Methods: Soil samples from four unique locations of North-East Libya were collected for the isolation of oleaginous Mortierella alpina strains by a serial dilution method. Morphological identification was carried out using light microscopy (Olympus, Japan) and genetic diversity of the isolated Mortierella alpina strains was assessed using conserved internal transcribed spacer (ITS) gene sequences available on the NCBI GenBank database for the confirmation of novelty. The nucleotide sequences reported in this study have been deposited at GenBank (accession no. MZ298831:MZ298835). The MultAlin program was used to align the sequences of closely related strains. The DNA sequences were analyzed for phylogenetic relationships by molecular evolutionary genetic analysis using MEGA X software consisting of Clustal_X v.2.1 for multiple sequence alignment. The neighbour-joining tree was constructed using the Kimura 2-parameter substitution model. Results: The present research study confirms four oleaginous fungal isolates from Libyan soil. These isolates (barcoded as MSU-101, MSU-201, MSU-401 and MSU-501) were discovered and reported for the first time from diverse soil samples of district Aljabal Al-Akhdar in North-East Libya and fall in the class: Zygomycetes; order: Mortierellales. Conclusions: Four oleaginous fungal isolates barcoded as MSU-101, MSU-201, MSU-401 and MSU-501 were identified and confirmed by morphological and molecular analysis. These fungal isolates showed highest similarity with Mortierella alpina species and can be potentialistic single cell oil producers. Thus, the present research study provides insight to the unseen fungal diversity and contributes to more comprehensive Mortierella alpina reference collections worldwide.


Microbiology ◽  
2021 ◽  
Vol 167 (8) ◽  
Author(s):  
Hongchao Wang ◽  
Chunmei Wang ◽  
Weiwei Yuan ◽  
Haiqin Chen ◽  
Wenwei Lu ◽  
...  

Phenylalanine hydroxylase (PAH) catalyses the irreversible hydroxylation of phenylalanine to tyrosine, which is the rate-limiting reaction in phenylalanine metabolism in animals. A variety of polyunsaturated fatty acids can be synthesized by the lipid-producing fungus Mortierella alpina, which has a wide range of industrial applications in the production of arachidonic acid. In this study, RNA interference (RNAi) with the gene PAH was used to explore the role of phenylalanine hydroxylation in lipid biosynthesis in M. alpina. Our results indicated that PAH knockdown decreased the PAH transcript level by approximately 55% and attenuated cellular fatty acid biosynthesis. Furthermore, the level of NADPH, which is a critical reducing agent and the limiting factor in lipogenesis, was decreased in response to PAH RNAi, in addition to the downregulated transcription of other genes involved in NADPH production. Our study indicates that PAH is part of an overall enzymatic and regulatory mechanism supplying NADPH required for lipogenesis in M. alpina.


2021 ◽  
Author(s):  
Fuzia Elfituri Muftah Eltariki ◽  
Kartikeya Tiwari ◽  
Mohammed Abdelfatah Alhoot

Abstract A large number of undiscovered fungal species still exist on earth, which can be useful for the bioprospecting particularly the single cell oil (SCO) production. The present research study confirms four oleaginous fungal isolates from Libyan soil. These isolates (Barcoded as MSU-101, MSU-201, MSU-401 and MSU-501) were discovered and reported first time from diverse soil samples of district Aljabal Al-Akhdar in North-East Libya and fall in the class: Zygomycetes; order: Mortierellales. From the morphological and phylogenetic analysis, these isolates were identified and found as closest match with Mortierella alpina species. The present research study provides insight to the unseen fungal diversity and contributes to more comprehensive Mortierella alpina reference collections worldwide.


2021 ◽  
pp. 107794
Author(s):  
Lulu Chang ◽  
Hengqian Lu ◽  
Haiqin Chen ◽  
Xin Tang ◽  
Jianxin Zhao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document